First Author | Shim H | Year | 2016 |
Journal | Proc Natl Acad Sci U S A | Volume | 113 |
Issue | 27 | Pages | 7596-601 |
PubMed ID | 27313209 | Mgi Jnum | J:234283 |
Mgi Id | MGI:5789673 | Doi | 10.1073/pnas.1600934113 |
Citation | Shim H, et al. (2016) Deletion of the gene Pip4k2c, a novel phosphatidylinositol kinase, results in hyperactivation of the immune system. Proc Natl Acad Sci U S A 113(27):7596-601 |
abstractText | Type 2 phosphatidylinositol-5-phosphate 4-kinase (PI5P4K) converts phosphatidylinositol-5-phosphate to phosphatidylinositol-4,5-bisphosphate. Mammals have three enzymes PI5P4Kalpha, PI5P4Kbeta, and PI5P4Kgamma, and these enzymes have been implicated in metabolic control, growth control, and a variety of stress responses. Here, we show that mice with germline deletion of type 2 phosphatidylinositol-5-phosphate 4-kinase gamma (Pip4k2c), the gene encoding PI5P4Kgamma, appear normal in regard to growth and viability but have increased inflammation and T-cell activation as they age. Immune cell infiltrates increased in Pip4k2c(-/-) mouse tissues. Also, there was an increase in proinflammatory cytokines, including IFNgamma, interleukin 12, and interleukin 2 in plasma of Pip4k2c(-/-) mice. Pip4k2c(-/-) mice had an increase in T-helper-cell populations and a decrease in regulatory T-cell populations with increased proliferation of T cells. Interestingly, mammalian target of rapamycin complex 1 (mTORC1) signaling was hyperactivated in several tissues from Pip4k2c(-/-) mice and treating Pip4k2c(-/-) mice with rapamycin reduced the inflammatory phenotype, resulting in a decrease in mTORC1 signaling in tissues and a decrease in proinflammatory cytokines in plasma. These results indicate that PI5P4Kgamma plays a role in the regulation of the immune system via mTORC1 signaling. |