First Author | Aitken JF | Year | 2010 |
Journal | Diabetes | Volume | 59 |
Issue | 1 | Pages | 161-71 |
PubMed ID | 19794060 | Mgi Jnum | J:164173 |
Mgi Id | MGI:4830839 | Doi | 10.2337/db09-0548 |
Citation | Aitken JF, et al. (2010) Tetracycline treatment retards the onset and slows the progression of diabetes in human amylin/islet amyloid polypeptide transgenic mice. Diabetes 59(1):161-71 |
abstractText | OBJECTIVE: Aggregation of human amylin/islet amyloid polypeptide (hA/hIAPP) into small soluble beta-sheet-containing oligomers is linked to islet beta-cell degeneration and the pathogenesis of type 2 diabetes. Here, we used tetracycline, which modifies hA/hIAPP oligomerization, to probe mechanisms whereby hA/hIAPP causes diabetes in hemizygous hA/hIAPP-transgenic mice. RESEARCH DESIGN AND METHODS: We chronically treated hemizygous hA/hIAPP transgenic mice with oral tetracycline to determine its effects on rates of diabetes initiation, progression, and survival. RESULTS: Homozygous mice developed severe spontaneous diabetes due to islet beta-cell loss. Hemizygous transgenic animals also developed spontaneous diabetes, although severity was less and progression rates slower. Pathogenesis was characterized by initial islet beta-cell dysfunction followed by progressive beta-cell loss. Islet amyloid was absent from hemizygous animals with early-onset diabetes and correlated positively with longevity. Some long-lived nondiabetic hemizygous animals also had large islet-amyloid areas, showing that amyloid itself was not intrinsically cytotoxic. Administration of tetracycline dose-dependently ameliorated hyperglycemia and polydipsia, delayed rates of diabetes initiation and progression, and increased longevity compared with water-treated controls. CONCLUSIONS: This is the first report to show that treating hA/hIAPP transgenic mice with a modifier of hA/hIAPP misfolding can ameliorate their diabetic phenotype. Fibrillar amyloid was neither necessary nor sufficient to cause diabetes and indeed was positively correlated with longevity therein, whereas early- to mid-stage diabetes was associated with islet beta-cell dysfunction followed by beta-cell loss. Interventions capable of suppressing misfolding in soluble hA/hIAPP oligomers rather than mature fibrils may have potential for treating or preventing type 2 diabetes. |