|  Help  |  About  |  Contact Us

Publication : Green tea polyphenols reverse cooperation between c-Rel and CK2 that induces the aryl hydrocarbon receptor, slug, and an invasive phenotype.

First Author  Belguise K Year  2007
Journal  Cancer Res Volume  67
Issue  24 Pages  11742-50
PubMed ID  18089804 Mgi Jnum  J:130797
Mgi Id  MGI:3772372 Doi  10.1158/0008-5472.CAN-07-2730
Citation  Belguise K, et al. (2007) Green tea polyphenols reverse cooperation between c-Rel and CK2 that induces the aryl hydrocarbon receptor, slug, and an invasive phenotype. Cancer Res 67(24):11742-50
abstractText  Exposure to and bioaccumulation of lipophilic environmental pollutants, such as polycyclic aromatic hydrocarbons (PAHs), has been implicated in breast cancer. Treatment of female rats with the prototypic xenobiotic PAH 7,12-dimethylbenz(a)anthracene (DMBA) induces mammary tumors with an invasive phenotype. Here, we show that green tea prevents or reverses loss of the epithelial marker E-cadherin on the surface of DMBA-induced in situ cancers. To investigate the mechanism(s) leading to a less invasive phenotype, the effects of the green tea polyphenol epigallocatechin-3 gallate (EGCG) on mammary tumor cells were assessed. EGCG reversed epithelial to mesenchymal transition (EMT) in DMBA-treated NF-kappaB c-Rel-driven mammary tumor cells and reduced levels of c-Rel and the protein kinase CK2. Ectopic coexpression of c-Rel and CK2alpha in untransformed mammary epithelial cells was sufficient to induce a mesenchymal gene profile. Mammary tumors and cell lines derived from MMTV-c-Rel x CK2alpha bitransgenic mice displayed a highly invasive phenotype. Coexpression of c-Rel and CK2, or DMBA exposure induced the aryl hydrocarbon receptor (AhR) and putative target gene product Slug, an EMT master regulator, which could be reversed by EGCG treatment. Thus, activation of c-Rel and CK2 and downstream targets AhR and Slug by DMBA induces EMT; EGCG can inhibit this signaling.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

0 Expression