|  Help  |  About  |  Contact Us

Publication : Functional requirements for a Samd14-capping protein complex in stress erythropoiesis.

First Author  Ray S Year  2022
Journal  Elife Volume  11
PubMed ID  35713400 Mgi Jnum  J:326600
Mgi Id  MGI:7313904 Doi  10.7554/eLife.76497
Citation  Ray S, et al. (2022) Functional requirements for a Samd14-capping protein complex in stress erythropoiesis. Elife 11:e76497
abstractText  Acute anemia induces rapid expansion of erythroid precursors and accelerated differentiation to replenish erythrocytes. Paracrine signals-involving cooperation between stem cell factor (SCF)/Kit signaling and other signaling inputs-are required for the increased erythroid precursor activity in anemia. Our prior work revealed that the sterile alpha motif (SAM) domain 14 (Samd14) gene increases the regenerative capacity of the erythroid system in a mouse genetic model and promotes stress-dependent Kit signaling. However, the mechanism underlying Samd14's role in stress erythropoiesis is unknown. We identified a protein-protein interaction between Samd14 and the alpha- and beta-heterodimers of the F-actin capping protein (CP) complex. Knockdown of the CP beta subunit increased erythroid maturation in murine ex vivo cultures and decreased colony forming potential of stress erythroid precursors. In a genetic complementation assay for Samd14 activity, our results revealed that the Samd14-CP interaction is a determinant of erythroid precursor cell levels and function. Samd14-CP promotes SCF/Kit signaling in CD71(med) spleen erythroid precursors. Given the roles of Kit signaling in hematopoiesis and Samd14 in Kit pathway activation, this mechanism may have pathological implications in acute/chronic anemia.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

4 Bio Entities

0 Expression