| First Author | Yamakage Y | Year | 2019 |
| Journal | Mol Cell Neurosci | Volume | 100 |
| Pages | 103401 | PubMed ID | 31491533 |
| Mgi Jnum | J:291718 | Mgi Id | MGI:6435540 |
| Doi | 10.1016/j.mcn.2019.103401 | Citation | Yamakage Y, et al. (2019) A disintegrin and metalloproteinase with thrombospondin motifs 2 cleaves and inactivates Reelin in the postnatal cerebral cortex and hippocampus, but not in the cerebellum. Mol Cell Neurosci 100:103401 |
| abstractText | Reelin plays important roles in regulating neuronal development, modulating synaptic function, and counteracting amyloid beta toxicity. A specific proteolytic cleavage (N-t cleavage) of Reelin abolishes its biological activity. We recently identified ADAMTS-3 (a disintegrin and metalloproteinase with thrombospondin motifs 3) as the major N-t cleavage enzyme in the embryonic and early postnatal brain. The contribution of other proteases, particularly in the postnatal brain, has not been demonstrated in vivo. ADAMTS-2, -3 and -14 share similar domain structures and substrate specificity, raising the possibility that ADAMTS-2 and -14 may cleave Reelin. We found that recombinant ADAMTS-2 protein expressed in cultured cell lines cleaves Reelin at the N-t site as efficiently as ADAMTS-3 while recombinant ADAMTS-14 hardly cleaves Reelin. The disintegrin domain is necessary for the Reelin-cleaving activity of ADAMTS-2 and -3. ADAMTS-2 is expressed in the adult brain at approximately the same level as ADAMTS-3. We generated ADAMTS-2 knockout (KO) mice and found that ADAMTS-2 significantly contributes to the N-t cleavage and inactivation of Reelin in the postnatal cerebral cortex and hippocampus, but much less in the cerebellum. Therefore, it was suggested that ADAMTS-2 can be a therapeutic target for adult brain disorders such as schizophrenia and Alzheimer's disease. |