|  Help  |  About  |  Contact Us

Publication : Inositol Pyrophosphate Metabolism Regulates Presynaptic Vesicle Cycling at Central Synapses.

First Author  Park SJ Year  2020
Journal  iScience Volume  23
Issue  4 Pages  101000
PubMed ID  32252022 Mgi Jnum  J:306957
Mgi Id  MGI:6718172 Doi  10.1016/j.isci.2020.101000
Citation  Park SJ, et al. (2020) Inositol Pyrophosphate Metabolism Regulates Presynaptic Vesicle Cycling at Central Synapses. iScience 23(4):101000
abstractText  The coordination of synaptic vesicle exocytosis and endocytosis supports neurotransmitter release from presynaptic terminals. Although inositol pyrophosphates, such as 5-diphosphoinositol pentakisphosphate (5-IP7), are versatile signaling metabolites in many biological events, physiological actions of 5-IP7 on synaptic membrane vesicle trafficking remain unclear. Here, we investigated the role of 5-IP7 in synaptic transmission in hippocampal brain slices from inositol hexakisphosphate kinase 1 (Ip6k1)-knockout mice. We found that presynaptic release probability was significantly increased in Ip6k1-knockout neurons, implying enhanced activity-dependent synaptic vesicle exocytosis. Expression of wild-type but not catalytically inactive IP6K1 in the Ip6k1-knockout hippocampus restored the altered presynaptic release probability. Moreover, Ip6k1-knockout neurons were insensitive to folimycin, a vacuolar ATPase inhibitor, and dynasore, a dynamin inhibitor, suggesting marked impairment in synaptic endocytosis during exocytosis. Our findings collectively establish that IP6K1 and its product, 5-IP7, act as key physiological determinants for inhibition of presynaptic vesicle exocytosis and stimulation of endocytosis at central synapses.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

0 Expression