|  Help  |  About  |  Contact Us

Publication : A transcriptional enhancer regulates cardiac maturation.

First Author  Htet M Year  2024
Journal  Nat Cardiovasc Res Volume  3
Issue  6 Pages  666-684
PubMed ID  39196225 Mgi Jnum  J:358600
Mgi Id  MGI:7782874 Doi  10.1038/s44161-024-00484-2
Citation  Htet M, et al. (2024) A transcriptional enhancer regulates cardiac maturation. Nat Cardiovasc Res 3(6):666-684
abstractText  Cardiomyocyte maturation is crucial for generating adult cardiomyocytes and the application of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs). However, regulation at the cis-regulatory element level and its role in heart disease remain unclear. Alpha-actinin 2 (ACTN2) levels increase during CM maturation. In this study, we investigated a clinically relevant, conserved ACTN2 enhancer's effects on CM maturation using hPSC and mouse models. Heterozygous ACTN2 enhancer deletion led to abnormal CM morphology, reduced function and mitochondrial respiration. Transcriptomic analyses in vitro and in vivo showed disrupted CM maturation and upregulated anabolic mammalian target for rapamycin (mTOR) signaling, promoting senescence and hindering maturation. As confirmation, ACTN2 enhancer deletion induced heat shock protein 90A expression, a chaperone mediating mTOR activation. Conversely, targeting the ACTN2 enhancer via enhancer CRISPR activation (enCRISPRa) promoted hPSC-CM maturation. Our studies reveal the transcriptional enhancer's role in cardiac maturation and disease, offering insights into potentially fine-tuning gene expression to modulate cardiomyocyte physiology.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

5 Bio Entities

0 Expression