|  Help  |  About  |  Contact Us

Publication : G protein-coupled receptor kinase 6A phosphorylates the Na(+)/H(+) exchanger regulatory factor via a PDZ domain-mediated interaction.

First Author  Hall RA Year  1999
Journal  J Biol Chem Volume  274
Issue  34 Pages  24328-34
PubMed ID  10446210 Mgi Jnum  J:200338
Mgi Id  MGI:5508297 Doi  10.1074/jbc.274.34.24328
Citation  Hall RA, et al. (1999) G protein-coupled receptor kinase 6A phosphorylates the Na(+)/H(+) exchanger regulatory factor via a PDZ domain-mediated interaction. J Biol Chem 274(34):24328-34
abstractText  The Na(+)/H(+) exchanger regulatory factor (NHERF) is constitutively phosphorylated in cells, but the site(s) of this phosphorylation and the kinase(s) responsible for it have not been identified. We show here that the primary site of constitutive NHERF phosphorylation in human embryonic kidney 293 (HEK-293) cells is Ser(289), and that the stoichiometry of phosphorylation is near 1 mol/mol. NHERF contains two PDZ domains that recognize the sequence S/T-X-L at the carboxyl terminus of target proteins, and thus we examined the possibility that kinases containing this motif might associate with and phosphorylate NHERF. Overlay experiments and co-immunoprecipitation studies revealed that NHERF binds with high affinity to a splice variant of the G protein-coupled receptor kinase 6, GRK6A, which terminates in the motif T-R-L. NHERF does not associate with GRK6B or GRK6C, alternatively spliced variants that differ from GRK6A at their extreme carboxyl termini. GRK6A phosphorylates NHERF efficiently on Ser(289) in vitro, whereas GRK6B, GRK6C, and GRK2 do not. Furthermore, the endogenous "NHERF kinase" activity in HEK-293 cell lysates is sensitive to treatments that alter the activity of GRK6A. These data suggest that GRK6A phosphorylates NHERF via a PDZ domain-mediated interaction and that GRK6A is the kinase in HEK-293 cells responsible for the constitutive phosphorylation of NHERF.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

1 Bio Entities

0 Expression