|  Help  |  About  |  Contact Us

Publication : Spatial and temporal expression patterns of the epithelial cell adhesion molecule (EpCAM/EGP-2) in developing and adult kidneys.

First Author  Trzpis M Year  2007
Journal  Nephron Exp Nephrol Volume  107
Issue  4 Pages  e119-31
PubMed ID  18025791 Mgi Jnum  J:132048
Mgi Id  MGI:3774991 Doi  10.1159/111039
Citation  Trzpis M, et al. (2007) Spatial and temporal expression patterns of the epithelial cell adhesion molecule (EpCAM/EGP-2) in developing and adult kidneys. Nephron Exp Nephrol 107(4):e119-31
abstractText  BACKGROUND: The epithelial cell adhesion molecule (EpCAM) is expressed by most epithelia and is involved in processes fundamental for morphogenesis, including cell-cell adhesion, proliferation, differentiation, and migration. Previously, a role for EpCAM in pancreatic morphogenesis was confirmed in vitro. Furthermore, changes in the EpCAM expression pattern were found in developing lung and thymus and in the regenerating liver. Therefore, EpCAM was proposed to be a morphoregulatory molecule. METHODS: Using immunohistochemistry, the expression pattern of human and murine homologues of EpCAM was characterized in adult and embryonic kidneys from humans and human-EpCAM (hEpCAM)-transgenic mice. RESULTS: EpCAM expression was found in the ureteric bud throughout nephrogenesis. EpCAM was not expressed in the metanephric mesenchyme. In comma- and S-shaped bodies, both metanephric mesenchyme derived structures, EpCAM expression appeared by E13.5. In adult kidneys, most epithelia expressed varying levels of EpCAM, as confirmed by double staining for human EpCAM and segment-specific nephron markers. Podocytes were EpCAM negative. At the cellular level, the EpCAM expression shifted from apical in embryonic to basolateral in adult kidneys. CONCLUSIONS: The spatiotemporal expression pattern of EpCAM changes during nephrogenesis. In the adult kidney, the expression varies markedly along the nephron. These data provide a basis for further studies on EpCAM in developing and adult kidneys.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

6 Expression