First Author | Caughey GH | Year | 2000 |
Journal | J Immunol | Volume | 164 |
Issue | 12 | Pages | 6566-75 |
PubMed ID | 10843716 | Mgi Jnum | J:62836 |
Mgi Id | MGI:1859731 | Doi | 10.4049/jimmunol.164.12.6566 |
Citation | Caughey GH, et al. (2000) Characterization of human gamma-tryptases, novel members of the chromosome 16p mast cell tryptase and prostasin gene families. J Immunol 164(12):6566-75 |
abstractText | Previously, this laboratory identified clusters of alpha-, beta-, and mast cell protease-7-like tryptase genes on human chromosome 16p13.3. The present work characterizes adjacent genes encoding novel serine proteases, termed gamma-tryptases, and generates a refined map of the multitryptase locus. Each gamma gene lies between an alpha1H Ca2+ channel gene (CACNA1H) and a betaII- or betaIII-tryptase gene and is approximately 30 kb from polymorphic minisatellite MS205. The tryptase locus also contains at least four tryptase-like pseudogenes, including mastin, a gene expressed in dogs but not in humans. Genomic DNA blotting results suggest that gammaI- and gammaII-tryptases are alleles at the same site. betaII- and betaIII-tryptases appear to be alleles at a neighboring site, and alphaII- and betaI-tryptases appear to be alleles at a third site. gamma-Tryptases are transcribed in lung, intestine, and in several other tissues and in a mast cell line (HMC-1) that also expresses gamma-tryptase protein. Immunohistochemical analysis suggests that gamma-tryptase is expressed by airway mast cells. gamma-Tryptase catalytic domains are approximately 48% identical with those of known mast cell tryptases and possess mouse homologues. We predict that gamma-tryptases are glycosylated oligomers with tryptic substrate specificity and a distinct mode of activation. A feature not found in described tryptases is a C-terminal hydrophobic domain, which may be a membrane anchor. Although the catalytic domains contain tryptase-like features, the hydrophobic segment and intron-exon organization are more closely related to another recently described protease, prostasin. In summary, this work describes gamma-tryptases, which are novel members of chromosome 16p tryptase/prostasin gene families. Their unique features suggest possibly novel functions. |