|  Help  |  About  |  Contact Us

Publication : Zinc partitions insulin-like growth factors (IGFs) from soluble IGF binding protein (IGFBP)-5 to the cell surface receptors of BC3H-1 muscle cells.

First Author  McCusker RH Year  2003
Journal  J Cell Physiol Volume  197
Issue  3 Pages  388-99
PubMed ID  14566968 Mgi Jnum  J:86296
Mgi Id  MGI:2679358 Doi  10.1002/jcp.10360
Citation  McCusker RH, et al. (2003) Zinc partitions insulin-like growth factors (IGFs) from soluble IGF binding protein (IGFBP)-5 to the cell surface receptors of BC3H-1 muscle cells. J Cell Physiol 197(3):388-99
abstractText  Zinc (Zn(2+)) is a multifunctional micronutrient. The list of functions for this micronutrient expanded with the recent discovery that Zn(2+) retains insulin-like growth factors binding proteins (IGFBPs) on the surface of cultured cells, lowers the affinity of cell-associated IGFBPs, and increases the affinity of the cell surface insulin-like growth factor (IGF)-type 1 receptor (IGF-1R). However, currently there is no information concerning the effect of Zn(2+) on soluble IGFBPs. In the current study, the soluble IGFBP-5 secreted by BC(3)H-1 cells is shown to bind approximately 50% more [(125)I]-IGF-II than [(125)I]-IGF-I at pH 7.4. Zn(2+) is shown to depress the binding of both IGF-I and IGF-II to soluble secreted IGFBP-5; [(125)I]-IGF-I binding is affected more so than [(125)I]-IGF-II binding. Zn(2+) acts by lowering the affinity (K(a)) of IGFBP-5 for the IGFs. Scatchard plots are non-linear indicating the presence of high and low affinity binding sites; Zn(2+) affects only binding to the high affinity site. In contrast, Zn(2+) increases the affinity by which either [(125)I]-IGF-I or [(125)I]-R(3)-IGF-I binds to the IGF-1R, but depresses [(125)I]-IGF-II binding to the IGF-type 2 receptor (IGF-2R) on BC(3)H-1 cells. By depressing the association of the IGFs with soluble IGFBPs, Zn(2+) is shown to repartition either [(125)I]-IGF-I or [(125)I]-IGF-II from soluble IGFBP-5 onto cell surface IGF receptors. Zn(2+) was active at physiological doses depressing IGF binding to IGFBP-5 and the IGF-2R at 15-20 microM. Hence, a novel mechanism is further characterized by which the trace micronutrient Zn(2+) could regulate IGF activity.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

0 Expression