|  Help  |  About  |  Contact Us

Publication : Phosphatidylinositol 3-kinase, phosphoinositide-specific phospholipase-Cgamma and protein kinase-C signal myelin phagocytosis mediated by complement receptor-3 alone and combined with scavenger receptor-AI/II in macrophages.

First Author  Makranz C Year  2004
Journal  Neurobiol Dis Volume  15
Issue  2 Pages  279-86
PubMed ID  15006698 Mgi Jnum  J:88811
Mgi Id  MGI:3037226 Doi  10.1016/j.nbd.2003.11.007
Citation  Makranz C, et al. (2004) Phosphatidylinositol 3-kinase, phosphoinositide-specific phospholipase-Cgamma and protein kinase-C signal myelin phagocytosis mediated by complement receptor-3 alone and combined with scavenger receptor-AI/II in macrophages. Neurobiol Dis 15(2):279-86
abstractText  Complement-receptor-3 (CR3/MAC-1), scavenger-receptor-AI/II (SRAI/II) and Fcgamma-receptor (FcgammaR) can mediate phagocytosis of degenerated myelin in macrophages and microglia. However, CR3/MAC-1 and SRAI/II, but not FcgammaR, mediate phagocytosis after axonal injury. We tested for phosphatidylinositol 3-kinase (PI3K), phosphoinositide-specific phospholipase-Cgamma (PLCgamma) and protein kinase-C (PKC) signaling in myelin phagocytosis mediated by CR3/MAC-1 alone and by CR3/MAC-1 combined with SRAI/II. Phagocytosis was inhibited by PI3K inhibitors wortmannin and LY-294002, PLCgamma inhibitor U-73122, classical PKC (cPKC) inhibitor Go-6976, general PKC inhibitors Ro-318220 and calphostin-C, and BAPTA/AM which chelates intracellular Ca(2+) required for cPKC activation. PKC activator PMA augmented phagocytosis and further alleviated inhibitions induced by PI3K and PLCgamma inhibitors. Overall, altering PKC activity modulated phagocytosis 4- to 6-fold between inhibition and augmentation. PLCgamma activation did not require tyrosine phosphorylation. Thus, signaling of myelin phagocytosis mediated by CR3/MAC-1 alone and by CR3/MAC-1 combined with SRAI/II involves PI3K, PLCgamma and cPKC, the cascade PI3K-->PLCgamma-->cPKC, and wide-range modulation by PKC. This pathway may thus be targeted for in vivo modulation, which may explain differences in the efficiency of CR3/MAC-1-mediated myelin phagocytosis in different pathological conditions.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

0 Expression