|  Help  |  About  |  Contact Us

Publication : Phosphoinositide-dependent activation of the ADP-ribosylation factor GTPase-activating protein ASAP1. Evidence for the pleckstrin homology domain functioning as an allosteric site.

First Author  Kam JL Year  2000
Journal  J Biol Chem Volume  275
Issue  13 Pages  9653-63
PubMed ID  10734117 Mgi Jnum  J:204650
Mgi Id  MGI:5532922 Doi  10.1074/jbc.275.13.9653
Citation  Kam JL, et al. (2000) Phosphoinositide-dependent activation of the ADP-ribosylation factor GTPase-activating protein ASAP1. Evidence for the pleckstrin homology domain functioning as an allosteric site. J Biol Chem 275(13):9653-63
abstractText  The ADP-ribosylation factor (Arf) family of GTP-binding proteins are regulators of membrane traffic and the actin cytoskeleton. Both negative and positive regulators of Arf, the centaurin beta family of Arf GTPase-activating proteins (GAPs) and Arf guanine nucleotide exchange factors, contain pleckstrin homology (PH) domains and are activated by phosphoinositides. To understand how the activities are coordinated, we have examined the role of phosphoinositide binding for Arf GAP function using ASAP1/centaurin beta4 as a model. In contrast to Arf exchange factors, phosphatidylinositol 4, 5-bisphosphate (PtdIns-4,5-P(2)) specifically activated Arf GAP. D3 phosphorylated phosphoinositides were less effective. Activation involved PtdIns-4,5-P(2) binding to the PH domain; however, in contrast to the Arf exchange factors and contrary to predictions based on the current paradigm for PH domains as independently functioning recruitment signals, we found the following: (i) the PH domain was dispensable for targeting to PDGF-induced ruffles; (ii) activation and recruitment could be uncoupled; (iii) the PH domain was necessary for activity even in the absence of phospholipids; and (iv) the Arf GAP domain influenced localization and lipid binding of the PH domain. Furthermore, PtdIns-4,5-P(2) binding to the PH domain caused a conformational change in the Arf GAP domain detected by limited proteolysis. Thus, these data demonstrate that PH domains can function as allosteric sites. In addition, differences from the published properties of the Arf exchange factors suggest a model in which feedforward and feedback loops involving lipid metabolites coordinate GTP binding and hydrolysis by Arf.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

1 Bio Entities

0 Expression