|  Help  |  About  |  Contact Us

Publication : Caveolin-1 binding to endoplasmic reticulum membranes and entry into the regulated secretory pathway are regulated by serine phosphorylation. Protein sorting at the level of the endoplasmic reticulum.

First Author  Schlegel A Year  2001
Journal  J Biol Chem Volume  276
Issue  6 Pages  4398-408
PubMed ID  11078729 Mgi Jnum  J:67278
Mgi Id  MGI:1930335 Doi  10.1074/jbc.M005448200
Citation  Schlegel A, et al. (2001) Caveolin-1 binding to endoplasmic reticulum membranes and entry into the regulated secretory pathway are regulated by serine phosphorylation. Protein sorting at the level of the endoplasmic reticulum. J Biol Chem 276(6):4398-408
abstractText  Caveolin-1 serves as the main coat protein of caveolae membranes, as an intracellular cholesterol shuttle, and as a regulator of diverse signaling molecules. Of the 12 residues conserved across all caveolin isoforms from all species examined to date, only Ser(80) and Ser(168) could serve as phosphorylation sites. We show here that mimicking chronic phosphorylation of Ser(80) by mutation to Glu (i.e. Cav-1(S80E)), blocks phosphate incorporation. However, Cav-1(S168E) is phosphorylated to the same extent as wild-type caveolin-1. Cav-1(S80E) targets to the endoplasmic reticulum membrane, remains oligomeric, and maintains normal membrane topology. In contrast, Cav-1(S80A), which cannot be phosphorylated, targets to caveolae membranes. Some exocrine cells secrete caveolin-1 in a regulated manner. Cav-1(S80A) is not secreted by AR42J pancreatic adenocarcinoma cells even in the presence of dexamethasone, an agent that induces the secretory phenotype. Conversely, Cav-1(S80E) is secreted to a greater extent than wild-type caveolin-1 following dexamethasone treatment. We conclude that caveolin-1 phosphorylation on invariant serine residue 80 is required for endoplasmic reticulum retention and entry into the regulated secretory pathway.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

2 Bio Entities

0 Expression