|  Help  |  About  |  Contact Us

Publication : Role of cytoplasmic dynein in melanosome transport in human melanocytes.

First Author  Byers HR Year  2000
Journal  J Invest Dermatol Volume  114
Issue  5 Pages  990-7
PubMed ID  10771482 Mgi Jnum  J:62095
Mgi Id  MGI:1858329 Doi  10.1046/j.1523-1747.2000.00957.x
Citation  Byers HR, et al. (2000) Role of cytoplasmic dynein in melanosome transport in human melanocytes. J Invest Dermatol 114(5):990-7
abstractText  Cytoplasmic dynein is a microtubule-associated retrograde-directed motor molecule for transport of membrane-bound organelles. To determine whether cytoplasmic dynein is expressed in melanocytes, we performed reverse transcriptase polymerase chain reaction using melanocyte cDNA and primers complementary to human brain cytoplasmic dynein heavy chain. A polymerase chain reaction product of the expected molecular size was generated and the identity was confirmed by sequence analysis. Western blotting of total melanocyte proteins reacted with an anti-intermediate chain cytoplasmic dynein antibody identified the appropriate 74 kDa band. To determine whether cytoplasmic dynein plays a role in melanosome transport, duplicate cultures were treated with cytoplasmic dynein antisense or sense (control) oligodeoxynucleotides and the cells were observed by high-resolution time-lapse microscopy, which allows visualization of melanosomal aggregates and individual melanosomes. Antisense-treated melanocytes demonstrated a strong anterograde transport of melanosomes from the cell body into the dendrites, whereas melanosome distribution was not affected in sense-treated melanocytes. To determine whether ultraviolet irradiation modifies cytoplasmic dynein expression, melanocyte cultures were exposed to increasing doses of solar-simulated irradiation, equivalent to a mild to moderate sunburn exposure for intact skin. Within 24 h, doses of 5 and 10 mJ per cm2 induced cytoplasmic dynein protein, whereas doses of 30 mJ per cm2 or more were associated with decreased levels of cytoplasmic dynein compared with sham-irradiated controls. Our data show that cytoplasmic dynein participates in retrograde melanosomal transport in human melanocytes and suggest that the altered melanosomal distribution in skin after sun exposure is due, at least in part, to decreased cytoplasmic dynein levels resulting in augmented anterograde transport.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

0 Bio Entities

0 Expression