|  Help  |  About  |  Contact Us

Publication : Role of NAD(P)H:quinone oxidoreductase 1 (DT diaphorase) in protection against quinone toxicity.

First Author  Joseph P Year  2000
Journal  Biochem Pharmacol Volume  60
Issue  2 Pages  207-14
PubMed ID  10825465 Mgi Jnum  J:62464
Mgi Id  MGI:1858967 Doi  10.1016/s0006-2952(00)00321-x
Citation  Joseph P, et al. (2000) Role of NAD(P)H:quinone oxidoreductase 1 (DT diaphorase) in protection against quinone toxicity. Biochem Pharmacol 60(2):207-14
abstractText  NQO1-/- mice, along with Chinese hamster ovary (CHO) cells, were used to determine the in vivo role of NAD(P)H:quinone oxidoreductase 1 (NQO1) in cellular protection against quinone cytotoxicity, membrane damage, DNA damage, and carcinogenicity. CHO cells permanently expressing various levels of cDNA-derived P450 reductase and NQO1 were produced. Treatment of CHO cells overexpressing P450 reductase with menadione, benzo[a]pyrene-3,6-quinone (BPQ), and benzoquinone led to increased cytotoxicity as compared with CHO cells expressing endogenous P450 reductase. In a similar experiment, overexpression of NQO1 significantly protected CHO cells against the cytotoxicity of these quinones. Knockout (NQO1-/-) mice deficient in NQO1 protein and activity had been generated previously in our laboratory and were used in the present studies. Wild-type (NQO1+/+) and knockout (NQO1-/-) mice were given i.p. injections of menadione and BPQ, followed by analysis of membrane damage and DNA damage. Both menadione and BPQ induced lipid peroxidation in hepatic and non-hepatic tissues, indicating increased membrane damage. Exposure to BPQ also resulted in increased hepatic DNA adducts in NQO1-/- mice as compared with NQO1+/+ mice. The skin application of BPQ alone and BPQ + 12-O-tetradecanoylphorbol-13-acetate (TPA) failed to induce papillomas, or other lesions, for up to 50 weeks in either NQO1+/+ or NQO1-/- mice. The various results from CHO cells and NQO1-/- mice indicated that NQO1 protects against quinone-induced cytotoxicity, as well as DNA and membrane damage. The absence of BPQ-induced skin carcinogenicity in NQO1-/- mice may be related to the strain (C57BL/6) of mice used in the present study and/or due to poor BPQ absorption into the skin and/or due to detoxification of BPQ by cytosolic NRH:quinone oxidoreductase 2 (NQO2).
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

1 Bio Entities

0 Expression