First Author | Gallichan WS | Year | 1999 |
Journal | J Immunol | Volume | 163 |
Issue | 3 | Pages | 1696-703 |
PubMed ID | 10415077 | Mgi Jnum | J:56398 |
Mgi Id | MGI:1340918 | Doi | 10.4049/jimmunol.163.3.1696 |
Citation | Gallichan WS, et al. (1999) Pancreatic IL-4 expression results in islet-reactive Th2 cells that inhibit diabetogenic lymphocytes in the nonobese diabetic mouse. J Immunol 163(3):1696-703 |
abstractText | When immunological tolerance breaks down, autoimmune destruction of insulin-producing beta cells in the pancreas can cause insulin-dependent diabetes mellitus. We previously showed that transgenic nonobese diabetic (NOD) mice expressing IL-4 in the pancreas (NOD-IL-4 mice) were protected from insulitis and diabetes. Here we have characterized the avoidance of pathological autoimmunity in these mice. The absence of disease did not result from a lack of T cell priming, because T cells responding to dominant islet Ags were present. These islet Ag-specific T cells displayed a Th2 phenotype, indicating that Th2 responses could account for the observed tolerance. Interestingly, islet Ag-specific Th1 T cells were present and found to be functional, because neutralization of the Th2 effector cytokines IL-4 and IL-10 resulted in diabetes. Histological examination revealed that NOD-IL-4 splenocytes inhibited diabetogenic T cells in cotransfer experiments by limiting insulitis and delaying diabetes. Neutralization of IL-4 in this system abrogated the ability of NOD-IL-4 splenocytes to delay the onset of diabetes. These results indicate that IL-4 expressed in the islets does not prevent the generation of pathogenic islet responses but induces islet Ag-specific Th2 T cells that block the action of diabetogenic T cells in the pancreas. |