First Author | Herold MJ | Year | 2002 |
Journal | J Immunol | Volume | 168 |
Issue | 8 | Pages | 3902-9 |
PubMed ID | 11937545 | Mgi Jnum | J:75922 |
Mgi Id | MGI:2178033 | Doi | 10.4049/jimmunol.168.8.3902 |
Citation | Herold MJ, et al. (2002) Mitochondria-Dependent Caspase-9 Activation Is Necessary for Antigen Receptor-Mediated Effector Caspase Activation and Apoptosis in WEHI 231 Lymphoma Cells. J Immunol 168(8):3902-9 |
abstractText | Engagement of the B cell Ag receptor (BCR) on immature B cells leads to growth arrest followed by apoptosis. Concomitant signaling through CD40 sustains proliferation and rescues the cells from apoptosis. Previously, we have shown that cross-linking CD40 on B cells stimulates the expression of A1, an antiapoptotic member of the Bcl-2 family, and that transduction of the murine B lymphoma line WEHI 231, a model for immature B cells, with A1 protected the cells against BCR-induced apoptosis. Here we demonstrate that A1 strongly interferes with activation of caspase-7, the major effector caspase activated after BCR cross-linking on WEHI 231 lymphoma cells. The pathway leading to activation of the effector caspase cascade including caspase-7 is unclear. Using retrovirally transduced WEHI 231 cell populations, we show that a catalytically inactive mutant of caspase-7 is cleaved almost as efficiently as the wild-type form, arguing against autocatalysis as the sole activating process. In contrast, overexpression of catalytically inactive caspase-9 strongly interferes with caspase-7 processing, poly(ADP-ribose) polymerase cleavage, and DNA laddering, suggesting a role for caspase-9 and hence for the mitochondrial pathway. The importance of the mitochondrial/caspase-9 pathway for BCR-triggered apoptosis is highlighted by our finding that both A1 and the mutant caspase-9 attenuate BCR-induced apoptosis. Thus, our data suggest that the BCR-mediated apoptotic signal in immature B cells spreads via a mitochondrial/caspase-9 pathway. |