|  Help  |  About  |  Contact Us

Publication : Phosphatidylinositol 4,5-bisphosphate regulates adipocyte actin dynamics and GLUT4 vesicle recycling.

First Author  Kanzaki M Year  2004
Journal  J Biol Chem Volume  279
Issue  29 Pages  30622-33
PubMed ID  15123724 Mgi Jnum  J:91705
Mgi Id  MGI:3050252 Doi  10.1074/jbc.M401443200
Citation  Kanzaki M, et al. (2004) Phosphatidylinositol 4,5-bisphosphate regulates adipocyte actin dynamics and GLUT4 vesicle recycling. J Biol Chem 279(29):30622-33
abstractText  To investigate the potential role of phosphatidylinositol 4, 5-bisphosphate (PI(4,5)P2) in the regulation of actin polymerization and GLUT4 translocation, the type I phosphatidylinositol 4-phosphate 5-kinases (PIP5Ks) were expressed in 3T3L1 adipocytes. In preadipocytes (fibroblasts) PIP5K expression promoted actin polymerization on membrane-bound vesicles to form motile actin comets. In contrast, expression of PIP5K in differentiated 3T3L1 adipocytes resulted in the formation of enlarged vacuole-like structures coated with F-actin, cortactin, dynamin, and N-WASP. Treatment with either latrunculin B (an inhibitor for actin polymerization) or Clostridium difficile toxin B (a general Rho family inhibitor) resulted in a relatively slower disappearance of coated F-actin from these vacuoles, but the vacuoles themselves remained unaffected. Functionally, the increased PI(4,5)P2 levels resulted in an inhibition of transferrin receptor and GLUT4 endocytosis and a slow accumulation of these proteins in the PI(4,5)P2-enriched vacuoles along with the non-clathrin-derived endosome marker (caveolin) and the AP-2 adaptor complex. However, these structures were devoid of early endosome markers (EEA1, clathrin) and the biosynthetic membrane secretory machinery markers p115 (Golgi) and syntaxin 6 (trans-Golgi Network). Taken together, these data demonstrate that PI(4,5)P2 has distinct morphologic and functional properties depending upon specific cell context. In adipocytes, altered PI(4,5)P2 metabolism has marked effects on GLUT4 endocytosis and intracellular vesicle trafficking due to the derangement of actin dynamics.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

7 Bio Entities

0 Expression