First Author | Corti S | Year | 2005 |
Journal | FASEB J | Volume | 19 |
Issue | 13 | Pages | 1860-2 |
PubMed ID | 16150803 | Mgi Jnum | J:102675 |
Mgi Id | MGI:3607899 | Doi | 10.1096/fj.05-4170fje |
Citation | Corti S, et al. (2005) Multipotentiality, homing properties, and pyramidal neurogenesis of CNS-derived LeX(ssea-1)+/CXCR4+ stem cells. FASEB J 19(13):1860-2 |
abstractText | Achieving efficient distribution of neural stem cells throughout the central nervous system (CNS) and robust generation of specific neurons is a major challenge for the development of cell-mediated therapy for neurodegenerative diseases. We isolated a primitive neural stem cell subset, double positive for LeX(Le) and CXCR4(CX) antigens that possesses CNS homing potential and extensive neuronal repopulating capacity. Le+CX+ cells are multipotential and can generate neurons as well as myogenic and endothelial cells. In vivo Le+CX+ cells displayed widespread incorporation and differentiated into cortical and hippocampal pyramidal neurons. Since intravenous delivery could be a less invasive route of transplantation, we investigated whether Le+CX+ cells could migrate across endothelial monolayers. Intracerebral coadministration of SDF enabled migration of intravenously injected Le+CX+ cells into the CNS and a small, yet significant, number of donor cells differentiated into neurons. The isolation of a specific neural stem cell population could offer major advantages to neuronal replacement strategies. |