|  Help  |  About  |  Contact Us

Publication : Isoform-specific membrane targeting mechanism of Rac during Fc gamma R-mediated phagocytosis: positive charge-dependent and independent targeting mechanism of Rac to the phagosome.

First Author  Ueyama T Year  2005
Journal  J Immunol Volume  175
Issue  4 Pages  2381-90
PubMed ID  16081809 Mgi Jnum  J:107502
Mgi Id  MGI:3621332 Doi  10.4049/jimmunol.175.4.2381
Citation  Ueyama T, et al. (2005) Isoform-specific membrane targeting mechanism of Rac during Fc gamma R-mediated phagocytosis: positive charge-dependent and independent targeting mechanism of Rac to the phagosome. J Immunol 175(4):2381-90
abstractText  Rac1 and Rac2 are capable of stimulating superoxide production in vitro, but their targeting and functional mechanisms are still unknown. In the present study, we found that Rac1, 2, and 3 all accumulate at the phagosome during Fc gammaR-mediated phagocytosis, and that the order of accumulation (Rac1 > Rac3 > Rac2) depends on the net positive charge in their polybasic (PB) regions (183-188 aa). Although all GFP-tagged prenylated PB regions of Rac isoforms (GFP-Rac(PB)) and GFP-tagged prenylated 6 Ala (GFP-6A) accumulated during phagocytosis, GFP-Rac2(PB) and GFP-6A showed weak accumulation at the phagosome through a linear structure connecting the phagosome and endomembranes. The PB region of Rac1 showed strong phospholipid interaction with PI(3)P, PI(4)P, PI(5)P, PI(3,4,5)P3, and phosphatidic acid, however, that of Rac2 did not. Constitutively active Rac2, GFP-Rac2(Q61L), was predominantly localized at the endomembranes; these endomembranes fused to the phagosome through the linear structure during phagocytosis, and this accumulation mechanism did not depend on positive charge in the PB region. Our conclusion is that Rac1 directly targets to the phagosome using the positively charged PB region and this accumulation mechanism is likely enhanced by the phospholipids. In addition to this mechanism, Rac2 has a positive charge-independent mechanism in which Rac2 initially targets to endomembranes and then these endomembranes fuse to the phagosome.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

0 Expression