|  Help  |  About  |  Contact Us

Publication : Lack of SPNS1 results in accumulation of lysolipids and lysosomal storage disease in mouse models.

First Author  Ha HT Year  2024
Journal  JCI Insight Volume  9
Issue  8 PubMed ID  38451736
Mgi Jnum  J:346909 Mgi Id  MGI:7619159
Doi  10.1172/jci.insight.175462 Citation  Ha HT, et al. (2024) Lack of SPNS1 results in accumulation of lysolipids and lysosomal storage disease in mouse models. JCI Insight :e175462
abstractText  Accumulation of sphingolipids, especially sphingosines, in the lysosomes is a key driver of several lysosomal storage diseases. The transport mechanism for sphingolipids from the lysosome remains unclear. Here, we identified SPNS1, which shares the highest homology to SPNS2 - a sphingosine-1-phosphate (S1P) transporter, functions as a transporter for lysolipids from the lysosome. We generated Spns1 knockout cells and mice and employed lipidomic and metabolomic approaches to reveal SPNS1 ligand identity. Global knockout of Spns1 caused embryonic lethality between E12.5-E13.5 and an accumulation of sphingosine, lysophosphatidylcholines (LPC) and lysophosphatidylethanolamines (LPE) in the fetal livers. Similarly, metabolomic analysis of livers from postnatal Spns1 knockout (Spns1-KO) mice presented an accumulation of sphingosines and lysoglycerophospholipids including LPC and LPE. Subsequently, biochemical assays showed that SPNS1 is required for LPC and sphingosine release from lysosomes. The accumulation of these lysolipids in the lysosomes of Spns1-KO mice affected liver functions and altered the PI3K-AKT signaling pathway. Furthermore, we identified three human siblings with a homozygous variant in the SPNS1 gene. These patients suffer from developmental delay, neurological impairment, intellectual disability, and exhibiting cerebellar hypoplasia. These results reveal a critical role of SPNS1 as a promiscuous lysolipid transporter in the lysosomes and link its physiological functions with lysosomal storage diseases.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

12 Bio Entities

0 Expression