| First Author | Ho DT | Year | 2006 |
| Journal | J Biol Chem | Volume | 281 |
| Issue | 19 | Pages | 13169-79 |
| PubMed ID | 16533805 | Mgi Jnum | J:117474 |
| Mgi Id | MGI:3696591 | Doi | 10.1074/jbc.M601010200 |
| Citation | Ho DT, et al. (2006) Interacting JNK-docking sites in MKK7 promote binding and activation of JNK mitogen-activated protein kinases. J Biol Chem 281(19):13169-79 |
| abstractText | D-sites are a class of MAPK-docking sites that have been found in many MAPK regulators and substrates. A single functional, high affinity D-site has been identified near the N terminus of each of the MAPK kinases (MKKs or MEKs) MEK1, MEK2, MKK3, MKK4, and MKK6. Here we demonstrated that MKK7 recognizes its target JNK by a novel mechanism involving a partially cooperative interaction of three low affinity D-sites in the N-terminal domain of MKK7. Mutations of the conserved residues within any one of the three docking sites (D1, D2, and D3) disrupted the ability of the N-terminal domain of MKK7beta to bind JNK1 by about 50-70%. Moreover, mutation of any two of the three D-sites reduced binding by about 80-90%, and mutation of all three reduced binding by 95%. Full-length MKK7 containing combined D1/D2 mutations was compromised for binding to JNK1 and exhibited reduced JNK1 kinase activity when compared with wild-type MKK7. Peptide versions of the D-sites from MKK4 or the JIP-1 scaffold protein inhibited MKK7-JNK binding, suggesting that all three JNK regulators bind to the same region of JNK. Moreover, peptide versions of any of the three D-sites of MKK7 inhibited the ability of JNK1 and JNK2 to phosphorylate their transcription factor substrates c-Jun and ATF2, suggesting that D-site-containing substrates also compete with MKK7 for docking to JNK. Finally, MKK7-derived D-site peptides exhibited selective inhibition of JNK1 versus ERK2. We conclude that MKK7 contains three JNK-docking sites that interact to selectively bind JNK and contribute to JNK signal transmission and specificity. |