|  Help  |  About  |  Contact Us

Publication : Structure-function analysis of mouse Pur beta II. Conformation altering mutations disrupt single-stranded DNA and protein interactions crucial to smooth muscle alpha-actin gene repression.

First Author  Knapp AM Year  2007
Journal  J Biol Chem Volume  282
Issue  49 Pages  35899-909
PubMed ID  17906292 Mgi Jnum  J:128995
Mgi Id  MGI:3768475 Doi  10.1074/jbc.M706617200
Citation  Knapp AM, et al. (2007) Structure-function analysis of mouse Pur beta II. Conformation altering mutations disrupt single-stranded DNA and protein interactions crucial to smooth muscle alpha-actin gene repression. J Biol Chem 282(49):35899-909
abstractText  Previous studies from our laboratories have implicated two members of the Pur family of single-stranded DNA/RNA-binding proteins, Pur alpha and Pur beta, in transcriptional repression of the smooth muscle alpha-actin gene in vascular cell types. Although Pur alpha and Pur beta share substantial sequence homology and nucleic acid binding properties, genomic promoter and cis-element occupancy studies reported herein suggest that Pur beta is the dominant factor in gene regulation. To dissect the molecular basis of Pur beta repressor activity, site-directed mutagenesis was used to map amino acids critical to the physical and functional interaction of Pur beta with the smooth muscle alpha-actin promoter. Of all the various acidic, basic, and aromatic residues studied, mutation of positionally conserved arginines in the class I or class II repeat modules significantly attenuated Pur beta repressor activity in transfected vascular smooth muscle cells and fibroblasts. DNA binding and protein-protein interaction assays were conducted with purified recombinant Pur beta and selected mutants to reveal the physical basis for loss-of-function. Mutants R57E, R57E/R96E, and R57A/R96A each exhibited reduced single-stranded DNA binding affinity for an essential promoter element and diminished interaction with corepressor YB-1/MSY1. Structural analyses of the R57A/R96A and R57E/R96E double mutants in comparison to the wild-type Pur beta homodimer revealed aberrant self-association into higher order oligomeric complexes, which correlated with decreased alpha-helical content and defective DNA and protein binding in vitro. These findings point to a previously unrecognized structural role for certain core arginine residues in forming a conformationally stable Pur beta protein capable of physical interactions necessary for smooth muscle alpha-actin gene repression.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

1 Bio Entities

0 Expression