First Author | Li Y | Year | 2008 |
Journal | J Biol Chem | Volume | 283 |
Issue | 34 | Pages | 23397-409 |
PubMed ID | 18534979 | Mgi Jnum | J:140267 |
Mgi Id | MGI:3813185 | Doi | 10.1074/jbc.M802737200 |
Citation | Li Y, et al. (2008) Mechanism of influenza A virus NS1 protein interaction with the p85beta, but not the p85alpha, subunit of phosphatidylinositol 3-kinase (PI3K) and up-regulation of PI3K activity. J Biol Chem 283(34):23397-409 |
abstractText | Influenza A virus infection activates the phosphatidylinositol 3-kinase (PI3K)/Akt pathway by binding influenza A virus NS1 protein to the p85beta regulatory subunit of PI3K. In this study, we report that NS1 binds to the inter-SH2 (iSH2) domain of p85beta. Mutational analyses on p85beta iSH2 domain defined that Val-573 is the critical amino acid (AA) that mediates NS1 and p85beta interaction. In reciprocal gain of function experiments with p85alpha, we demonstrated that mutation to Val at Met-582 leads to NS1 binding and increased PI3K activity. Molecular modeling based on our experimental results suggested that, in addition to the interaction interface between the NS1 SH3 binding motif 1 (AA 164-167) and p85beta Val-573, AA 137-142 in NS1 might interact with p85beta. Indeed, mutations of AA 141 and 142 in NS1 disrupted the interaction between NS1 and p85beta. Mutant virus PR8-NS1-141/142 was not able to activate Akt phosphorylation. Furthermore, PI3K assays demonstrated that, in wild-type virus-infected cells, p85beta-associated PI3K activity was increased significantly. In contrast, in the mutant virus-infected cells containing mutant NS1 unable to interact with p85beta, the p85beta-associated PI3K activity up-regulation was not seen, suggesting that PI3K up-regulation is dependent upon the interaction between NS1 and p85beta. Competition experiments and the immunoprecipitation studies demonstrated that NS1, p85beta, and p110 form a complex in cells. Finally, the mechanism by which binding of NS1 to p85beta regulates PI3K activity was discussed based on a predicted structural model of NS1-p85-p110 complex. |