First Author | Bracken CP | Year | 2008 |
Journal | Cancer Res | Volume | 68 |
Issue | 19 | Pages | 7846-54 |
PubMed ID | 18829540 | Mgi Jnum | J:141822 |
Mgi Id | MGI:3819867 | Doi | 10.1158/0008-5472.CAN-08-1942 |
Citation | Bracken CP, et al. (2008) A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res 68(19):7846-54 |
abstractText | Epithelial to mesenchymal transition occurs during embryologic development to allow tissue remodeling and is proposed to be a key step in the metastasis of epithelial-derived tumors. The miR-200 family of microRNAs plays a major role in specifying the epithelial phenotype by preventing expression of the transcription repressors, ZEB1/deltaEF1 and SIP1/ZEB2. We show here that miR-200a, miR-200b, and the related miR-429 are all encoded on a 7.5-kb polycistronic primary miRNA (pri-miR) transcript. We show that the promoter for the pri-miR is located within a 300-bp segment located 4 kb upstream of miR-200b. This promoter region is sufficient to confer expression in epithelial cells and is repressed in mesenchymal cells by ZEB1 and SIP1 through their binding to a conserved pair of ZEB-type E-box elements located proximal to the transcription start site. These findings establish a double-negative feedback loop controlling ZEB1-SIP1 and miR-200 family expression that regulates cellular phenotype and has direct relevance to the role of these factors in tumor progression. |