|  Help  |  About  |  Contact Us

Publication : Glucocorticoid conditioning of myeloid progenitors enhances TLR4 signaling via negative regulation of the phosphatidylinositol 3-kinase-Akt pathway.

First Author  Zhang TY Year  2007
Journal  J Immunol Volume  178
Issue  4 Pages  2517-26
PubMed ID  17277160 Mgi Jnum  J:143973
Mgi Id  MGI:3829547 Doi  10.4049/jimmunol.178.4.2517
Citation  Zhang TY, et al. (2007) Glucocorticoid conditioning of myeloid progenitors enhances TLR4 signaling via negative regulation of the phosphatidylinositol 3-kinase-Akt pathway. J Immunol 178(4):2517-26
abstractText  The immunomodulatory effects of glucocorticoids (GCs) have been described as bimodal, with high levels of GCs exerting immunosuppressive effects and low doses of GCs being immunopermissive. While the mechanisms used by GCs to achieve immunosuppression have been investigated intensely, the molecular mechanisms underlying the permissive effects of GCs remain uncharacterized. Herein, we demonstrate that GC conditioning during the differentiation of myeloid progenitors into macrophages (Mphis) results in their enhanced LPS responsiveness, demonstrated by an overexpression of the inflammatory cytokines TNF-alpha, IL-6, and IL-12. Inflammatory cytokine overexpression resulted from an increased activation of NF-kappaB and the MAPK signaling cascade and a reduced activation of the PI3K-Akt pathway following LPS stimulation. GC conditioning during Mphi differentiation induced an increase in the expression of SHIP1, a phosphatase that negatively regulates the PI3K signaling pathway. Small interfering RNA-mediated knockdown of SHIP1 expression increased PI3K-dependent Akt activation and subsequently decreased inflammatory cytokine expression, suggesting GC-mediated up-regulation of SHIP1 expression is responsible for the augmentation in inflammatory cytokine production following LPS stimulation. We also show that splenic Mphis purified from normal mice that were implanted with timed-release GC pellets exhibited an enhanced LPS responsiveness and increased SHIP1 expression, indicating that GCs can regulate SHIP1 expression in vivo. Our results suggest that minor fluctuations in physiological levels of endogenous GCs can program endotoxin-responsive hemopoietic cells during their differentiation by regulating their sensitivity to stimulation.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

2 Authors

1 Bio Entities

0 Expression