|  Help  |  About  |  Contact Us

Publication : Distinct roles of glycogen synthase kinase (GSK)-3alpha and GSK-3beta in mediating cardiomyocyte differentiation in murine bone marrow-derived mesenchymal stem cells.

First Author  Cho J Year  2009
Journal  J Biol Chem Volume  284
Issue  52 Pages  36647-58
PubMed ID  19858210 Mgi Jnum  J:158192
Mgi Id  MGI:4438266 Doi  10.1074/jbc.M109.019109
Citation  Cho J, et al. (2009) Distinct roles of glycogen synthase kinase (GSK)-3alpha and GSK-3beta in mediating cardiomyocyte differentiation in murine bone marrow-derived mesenchymal stem cells. J Biol Chem 284(52):36647-58
abstractText  The signaling mechanisms facilitating cardiomyocyte (CM) differentiation from bone marrow (BM)-derived mesenchymal stem cells (MSCs) are not well understood. 5-Azacytidine (5-Aza), a DNA demethylating agent, induces expression of cardiac-specific genes, such as Nkx2.5 and alpha-MHC, in mouse BM-derived MSCs. 5-Aza treatment caused significant up-regulation of glycogen synthase kinase (GSK)-3beta and down-regulation of beta-catenin, whereas it stimulated GSK-3alpha expression only modestly. The promoter region of GSK-3beta was heavily methylated in control MSCs, but was demethylated by 5-Aza. Although overexpression of GSK-3beta potently induced CM differentiation, that of GSK-3alpha induced markers of neuronal and chondrocyte differentiation. GSK-3 inhibitors, including LiCl, SB 216743, and BIO, abolished 5-Aza-induced up-regulation of CM-specific genes, suggesting that GSK-3 is necessary and sufficient for CM differentiation in MSCs. Although specific knockdown of endogenous GSK-3beta abolished 5-Aza-induced expression of cardiac specific genes, surprisingly, that of GSK-3alpha facilitated CM differentiation in MSCs. Although GSK-3beta is found in both the cytosol and nucleus in MSCs, GSK-3alpha is localized primarily in the nucleus. Nuclear-specific overexpression of GSK-3beta failed to stimulate CM differentiation. Down-regulation of beta-catenin mediates GSK-3beta-induced CM differentiation in MSCs, whereas up-regulation of c-Jun plays an important role in mediating CM differentiation induced by GSK-3alpha knockdown. These results suggest that GSK-3alpha and GSK-3beta have distinct roles in regulating CM differentiation in BM-derived MSCs. GSK-3beta in the cytosol induces CM differentiation of MSCs through down-regulation of beta-catenin. In contrast, GSK-3alpha in the nucleus inhibits CM differentiation through down-regulation of c-Jun.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

2 Bio Entities

0 Expression