First Author | Martchenko M | Year | 2010 |
Journal | Proc Natl Acad Sci U S A | Volume | 107 |
Issue | 35 | Pages | 15583-8 |
PubMed ID | 20713715 | Mgi Jnum | J:163746 |
Mgi Id | MGI:4829703 | Doi | 10.1073/pnas.1010145107 |
Citation | Martchenko M, et al. (2010) Heterodimeric integrin complexes containing beta1-integrin promote internalization and lethality of anthrax toxin. Proc Natl Acad Sci U S A 107(35):15583-8 |
abstractText | To kill macrophages, the lethal factor component of Bacillus anthracis toxin binds to a carrier protein (PA), which then interacts with the CMG2 receptor protein on the cell surface and is endocytosed into the cytoplasm. CMG2, as well as TEM8, a second PA receptor not present on macrophages, contain a von Willebrand A domain that is crucial for toxin binding. Here we report that integrin beta1, another cell surface von Willebrand A domain protein, can mediate and potentiate anthrax toxin endocytosis. By using microarray-based analysis to globally correlate gene expression profiles with toxin sensitivity, we associated toxin effects with the integrin-activating proteins osteopontin and CD44. Further study showed that PA binds to alpha4beta1- and alpha5beta1-integrin complexes, leading to their conjoint endocytosis, and also interacts-weakly relative to CMG2 but comparably to TEM8--with purified alpha5beta1 complex in vitro. Monoclonal antibody directed against beta1-integrin or its alpha integrin partners reduced PA/integrin endocytosis and anthrax toxin lethality, and hyaluronic acid--which interferes with CD44-mediated integrin activation--had similar effects. Remarkably, whereas deficiency of CMG2 protected macrophages from rapid killing by large toxin doses (>50 ng/mL), by 24 h the toxin-treated cells were dead. Such late killing of CMG2-deficient cells by high dose toxin as well as the late death observed during exposure of CMG2-producing macrophages to low-dose toxin (<1 ng/mL), was dependent on integrin function. Effects of inactivating both CMG2 and integrin were synergistic. Collectively, our findings argue strongly that beta1-integrin can both potentiate CMG2-mediated endocytosis and serve independently as a low-affinity PA receptor. |