|  Help  |  About  |  Contact Us

Publication : {beta}1-Adrenergic receptor activation induces mouse cardiac myocyte death through both L-type calcium channel-dependent and -independent pathways.

First Author  Wang W Year  2010
Journal  Am J Physiol Heart Circ Physiol Volume  299
Issue  2 Pages  H322-31
PubMed ID  20495143 Mgi Jnum  J:163871
Mgi Id  MGI:4830060 Doi  10.1152/ajpheart.00392.2010
Citation  Wang W, et al. (2010) {beta}1-Adrenergic receptor activation induces mouse cardiac myocyte death through both L-type calcium channel-dependent and -independent pathways. Am J Physiol Heart Circ Physiol 299(2):H322-31
abstractText  Cardiac diseases persistently increase the contractility demands of cardiac myocytes, which require activation of the sympathetic nervous system and subsequent increases in myocyte Ca(2+) transients. Persistent exposure to sympathetic and/or Ca(2+) stress is associated with myocyte death. This study examined the respective roles of persistent beta-adrenergic receptor (beta-AR) agonist exposure and high Ca(2+) concentration in myocyte death. Ventricular myocytes (VMs) were isolated from transgenic (TG) mice with cardiac-specific and inducible expression of the beta(2a)-subunit of the L-type Ca(2+) channel (LTCC). VMs were cultured, and the rate of myocyte death was measured in the presence of isoproterenol (ISO), other modulators of Ca(2+) handling and the beta-adrenergic system, and inhibitors of caspases and reactive oxygen species generation. The rate of myocyte death was greater in TG vs. wild-type myocytes and accelerated by ISO in both groups, although ISO did not increase LTCC current (I(Ca-L)) in TG-VMs. Nifedipine, an LTCC antagonist, only partially prevented myocyte death. These results suggest both LTCC-dependent and -independent mechanisms in ISO induced myocyte death. ISO increased the contractility of wild type and TG-VMs by enhancing sarcoplasmic reticulum function and inhibiting sarco(endo)plasmic reticulum Ca(2+)-ATPase, Na(+)/Ca(2+) exchanger, and CaMKII partially protected myocyte from death induced by both Ca(2+) and ISO. Caspase and reactive oxygen species inhibitors did not, but beta(2)-AR activation did, reduce myocyte death induced by enhanced I(Ca-L) and ISO stimulation. Our results suggest that catecholamines induce myocyte necrosis primarily through beta(1)-AR-mediated increases in I(Ca-L), but other mechanisms are also involved in rodents.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

1 Bio Entities

0 Expression