|  Help  |  About  |  Contact Us

Publication : Apoptosis is regulated by the VDAC1 N-terminal region and by VDAC oligomerization: release of cytochrome c, AIF and Smac/Diablo.

First Author  Shoshan-Barmatz V Year  2010
Journal  Biochim Biophys Acta Volume  1797
Issue  6-7 Pages  1281-91
PubMed ID  20214874 Mgi Jnum  J:165385
Mgi Id  MGI:4837075 Doi  10.1016/j.bbabio.2010.03.003
Citation  Shoshan-Barmatz V, et al. (2010) Apoptosis is regulated by the VDAC1 N-terminal region and by VDAC oligomerization: release of cytochrome c, AIF and Smac/Diablo. Biochim Biophys Acta 1797(6-7):1281-91
abstractText  Mitochondria, central to basic life functions due to their generation of cellular energy, also serve as the venue for cellular decisions leading to apoptosis. A key protein in mitochondria-mediated apoptosis is the voltage-dependent anion channel (VDAC), which also mediates the exchange of metabolites and energy between the cytosol and the mitochondria. In this study, the functions played by the N-terminal region of VDAC1 and by VDAC1 oligomerization in the release of cytochrome c, Smac/Diablo and apoptosis-inducing factor (AIF) and subsequent apoptosis were addressed. We demonstrate that cells undergoing apoptosis induced by STS or cisplatin and expressing N-terminally truncated VDAC1 do not release cytochrome c, Smac/Diablo or AIF. Ruthenium red (RuR), AzRu, DIDS and hexokinase-I (HK-I), all known to interact with VDAC, inhibited the release of cytochrome c, Smac/Diablo and AIF, while RuR-mediated inhibition was not observed in cells expressing RuR-insensitive E72Q-VDAC1. These findings suggest that VDAC1 is involved in the release of not only cytochrome c but also of Smac/Diablo and AIF. We also demonstrate that apoptosis induction is associated with VDAC oligomerization, as revealed by chemical cross-linking and monitoring in living cells using Bioluminescence Resonance Energy Transfer. Apoptosis induction by STS, H(2)O(2) or selenite augmented the formation of VDAC oligomers several fold. The results show VDAC1 to be a component of the apoptosis machinery and offer new insight into the functions of VDAC1 oligomerization in apoptosis and of the VDAC1 N-terminal domain in the release of apoptogenic proteins as well as into regulation of VDAC by anti-apoptotic proteins, such as HK and Bcl2.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

1 Bio Entities

0 Expression