First Author | Sbai O | Year | 2010 |
Journal | Glia | Volume | 58 |
Issue | 3 | Pages | 344-66 |
PubMed ID | 19780201 | Mgi Jnum | J:167899 |
Mgi Id | MGI:4880862 | Doi | 10.1002/glia.20927 |
Citation | Sbai O, et al. (2010) Differential vesicular distribution and trafficking of MMP-2, MMP-9, and their inhibitors in astrocytes. Glia 58(3):344-66 |
abstractText | Astrocytes play an active role in the central nervous system and are critically involved in astrogliosis, a homotypic response of these cells to disease, injury, and associated neuroinflammation. Among the numerous molecules involved in these processes are the matrix metalloproteinases (MMPs), a family of zinc-dependent endopeptidases, secreted or membrane-bound, that regulate by proteolytic cleavage the extracellular matrix, cytokines, chemokines, cell adhesion molecules, and plasma membrane receptors. MMP activity is tightly regulated by the tissue inhibitors of MMPs (TIMPs), a family of secreted multifunctional proteins. Astrogliosis in vivo and astrocyte reactivity induced in vitro by proinflammatory cues are associated with modulation of expression and/or activity of members of the MMP/TIMP system. However, nothing is known concerning the intracellular distribution and secretory pathways of MMPs and TIMPs in astrocytes. Using a combination of cell biology, biochemistry, fluorescence and electron microscopy approaches, we investigated in cultured reactive astrocytes the intracellular distribution, transport, and secretion of MMP-2, MMP-9, TIMP-1, and TIMP-2. MMP-2 and MMP-9 demonstrate nuclear localization, differential intracellular vesicular distribution relative to the myosin V and kinesin molecular motors, and LAMP-2-labeled lysosomal compartment, and we show vesicular secretion for MMP-2, MMP-9, and their inhibitors. Our results suggest that these proteinases and their inhibitors use different pathways for trafficking and secretion for distinct astrocytic functions. |