First Author | Nickerson PE | Year | 2011 |
Journal | Exp Eye Res | Volume | 92 |
Issue | 5 | Pages | 344-52 |
PubMed ID | 21320487 | Mgi Jnum | J:172035 |
Mgi Id | MGI:5002791 | Doi | 10.1016/j.exer.2011.02.002 |
Citation | Nickerson PE, et al. (2011) Changes in Musashi-1 subcellular localization correlate with cell cycle exit during postnatal retinal development. Exp Eye Res 92(5):344-52 |
abstractText | RNA-binding proteins, and in particular, the Musashi genes, function as essential regulators of progenitor functioning in both the developing and adult organism. In this report, we characterize the differential subcellular distribution of Musashi-1 in cells engaged in either proliferating or differentiating contexts in the developing mouse retina, and in cultured Muller glia. During retinal cell differentiation, Musashi-1 immunoreactivity shifts from exclusively cytoplasmic in retinal progenitor cells, to predominantly nuclear localization in differentiating neurons. This nuclear shift is transient, with localization in the adult retina becoming predominantly perinuclear and cytoplasmic in Muller glia and photoreceptors. A correlation between cell cycle progression and subcellular distribution of Musashi-1 is observed in passageable, adult Muller glial cells in vitro. Furthermore, treatment of Muller cultures with neuron-promoting differentiation media induces asymmetric cytoplasmic Musashi-1 immunoreactivity in dividing daughter cells. The observed shifts in subcellular Musashi-1 localization are consistent with contrasting roles for Musashi-1 during cell proliferation and differentiation. These data provide evidence that nuclear, and cytoplasmic sequestering of Musashi-1 in retinal cells is context-specific, and may contribute to downstream functioning of Musashi-1. |