|  Help  |  About  |  Contact Us

Publication : Glucagon-like peptide-2-stimulated protein synthesis through the PI 3-kinase-dependent Akt-mTOR signaling pathway.

First Author  Shi X Year  2011
Journal  Am J Physiol Endocrinol Metab Volume  300
Issue  3 Pages  E554-63
PubMed ID  21177288 Mgi Jnum  J:172315
Mgi Id  MGI:5006907 Doi  10.1152/ajpendo.00620.2010
Citation  Shi X, et al. (2011) Glucagon-like peptide-2-stimulated protein synthesis through the PI 3-kinase-dependent Akt-mTOR signaling pathway. Am J Physiol Endocrinol Metab 300(3):E554-63
abstractText  Glucagon-like peptide-2 (GLP-2) is a nutrient-responsive neuropeptide that exerts diverse actions in the gastrointestinal tract, including enhancing mucosal cell survival and proliferation. GLP-2 stimulates mucosal growth in vivo with an increased rate of protein synthesis. However, it was unclear whether GLP-2 can directly stimulate protein synthesis. The objective was to test critically whether GLP-2 receptor (GLP-2R) activation directly stimulates protein synthesis through a PI 3-kinase-dependent Akt-mTOR signaling pathway. HEK 293 cells (transfected with human GLP-2R cDNA) were treated with human GLP-2 with/without pretreatment of PI 3-kinase inhibitor (LY-294002) or mTOR inhibitor (rapamycin). Results show that 1) GLP-2 specifically bound to GLP-2R overexpressed in the HEK cells with K(a) = 0.22 nM and B(max) = 321 fmol/mug protein; 2) GLP-2-stimulated protein synthesis was dependent on the amount of GLP-2R cDNA and the dosage of GLP-2 and reached the plateau among 0.2-2 nM GLP-2; 3) GLP-2-stimulated protein synthesis was abolished by the PI 3-kinase inhibitor and mTOR inhibitor; and 4) GLP-2-mediated stimulation of phosphorylation on Akt and mTOR was dependent on the amount of GLP-2R cDNA transfected and the dosage of GLP-2. In addition, GLP-2-mediated action and signaling in regulation of protein synthesis were confirmed in mouse hippocampal neurons (expressing native GLP-2R). GLP-2 directly stimulated protein synthesis of primary cultured neurons in dosage-dependent, PI 3-kinase-dependent, and rapamycin-sensitive manners, which linked with activation of Akt-mTOR signaling pathway as well. We conclude that GLP-2R activation directly stimulates protein synthesis by activating the PI 3-kinase-dependent Akt-mTOR signaling pathway. GLP-2-stimulated protein synthesis may be physiologically relevant to maintaining neuronal long-term potentiation and providing secondary mediators (namely neuropeptides or growth factors).
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

2 Bio Entities

0 Expression