|  Help  |  About  |  Contact Us

Publication : The tryptophan metabolite 3-hydroxyanthranilic acid plays anti-inflammatory and neuroprotective roles during inflammation: role of hemeoxygenase-1.

First Author  Krause D Year  2011
Journal  Am J Pathol Volume  179
Issue  3 Pages  1360-72
PubMed ID  21855684 Mgi Jnum  J:176307
Mgi Id  MGI:5290026 Doi  10.1016/j.ajpath.2011.05.048
Citation  Krause D, et al. (2011) The tryptophan metabolite 3-hydroxyanthranilic acid plays anti-inflammatory and neuroprotective roles during inflammation: role of hemeoxygenase-1. Am J Pathol 179(3):1360-72
abstractText  Tryptophan metabolism by the kynurenine pathway (KP) is important to the pathogenesis of inflammatory, infectious, and degenerative diseases. The 3-hydroxykynurenine (3-HK) branch of the KP is activated in macrophages and microglia, leading to the generation of 3-HK, 3-hydroxyanthranilic acid (3-HAA), and quinolinic acid, which are considered neurotoxic owing to their free radical-generating and N-methyl-d-aspartic acid receptor agonist activities. We investigated the role of 3-HAA in inflammatory and antioxidant gene expression and neurotoxicity in primary human fetal central nervous system cultures treated with cytokines (IL-1 with or without interferon-gamma) or with Toll-like receptor ligands mimicking the proinflammatory central nervous system environment. Results were analyzed by microarray, Western blot, immunostain, enzyme-linked immunosorbent assay, and neurotoxicity assays. 3-HAA suppressed glial cytokine and chemokine expression and reduced cytokine-induced neuronal death. 3-HK also suppressed cytokine-induced neuronal death. Unexpectedly, 3-HAA was highly effective in inducing in astrocytes the expression of hemeoxygenase-1 (HO-1), an antioxidant enzyme with anti-inflammatory and cytoprotective properties. Optimal induction of HO-1 required 3-HAA and cytokines. In human microglia, 3-HAA weakly induced HO-1 and lipopolysaccharide suppressed microglial HO-1 expression. 3-HAA-mediated HO-1 expression was confirmed in cultured adult human astrocytes and in vivo after 3-HAA injection to mouse brains. Together, our results demonstrate the novel neuroprotective activity of the tryptophan metabolite 3-HAA and have implications for future therapeutic approaches for neuroinflammatory disorders.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

1 Bio Entities

0 Expression