|  Help  |  About  |  Contact Us

Publication : 17β-Estradiol activates GPER- and ESR1-dependent pathways inducing apoptosis in GC-2 cells, a mouse spermatocyte-derived cell line.

First Author  Chimento A Year  2012
Journal  Mol Cell Endocrinol Volume  355
Issue  1 Pages  49-59
PubMed ID  22306083 Mgi Jnum  J:186221
Mgi Id  MGI:5431204 Doi  10.1016/j.mce.2012.01.017
Citation  Chimento A, et al. (2012) 17beta-Estradiol activates GPER- and ESR1-dependent pathways inducing apoptosis in GC-2 cells, a mouse spermatocyte-derived cell line. Mol Cell Endocrinol 355(1):49-59
abstractText  In mammals, spontaneous apoptosis is observed particularly in differentiating spermatogonia and in spermatocytes. 17beta-Estradiol (E2) in primary rat pachytene spermatocytes (PS) binds estrogen receptor alpha (ESR1) and GPER to activate EGFR/ERK/c-Jun pathway leading to up regulation of proapoptotic factor bax. Aim of this study was to clarify the effector pathway(s) controlling spermatocytes apoptosis using as model GC-2 cells, an immortalized mouse pachytene spermatocyte-derived cell line, which reproduces primary cells responses to E2. In fact, in GC-2 cells we observed that ESR1 and GPER activation caused rapid ERK and c-Jun phosphorylation, bax up-regulation, events associated with apoptosis. We further investigated the apoptotic mechanism demonstrating that E2, as well as ESR1 and GPER specific agonists, induced sustained ERK, c-Jun and p38 phosphorylation, Cytochrome c release, caspase 3 and endogenous substrate Poly (ADP-ribose) polymerase (PARP) activation and increased expression of cell cycle inhibitor p21. When ESR1 or GPER expression was silenced, E2 was still able to decrease cell proliferation, only the concomitant silencing abolished E2 effect. These results indicate that GC-2 cells are a valid cell model to study E2-dependent apoptosis in spermatocytes and show that E2, activating both ESR1 and GPER, is able to induce an ERK1/2, c-Jun and p38-dependent mitochondrion apoptotic pathway in this cell type.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

2 Bio Entities

0 Expression