First Author | Takeuchi M | Year | 2010 |
Journal | Cell Death Differ | Volume | 17 |
Issue | 7 | Pages | 1211-20 |
PubMed ID | 20139893 | Mgi Jnum | J:186369 |
Mgi Id | MGI:5432091 | Doi | 10.1038/cdd.2010.6 |
Citation | Takeuchi M, et al. (2010) Glyoxalase-I is a novel target against Bcr-Abl+ leukemic cells acquiring stem-like characteristics in a hypoxic environment. Cell Death Differ 17(7):1211-20 |
abstractText | Abl tyrosine kinase inhibitors (TKIs) such as imatinib and dasatinib are ineffective against Bcr-Abl(+) leukemic stem cells. Thus, the identification of novel agents that are effective in eradicating quiescent Bcr-Abl(+) stem cells is needed to cure leukemias caused by Bcr-Abl(+) cells. Human Bcr-Abl(+) cells engrafted in the bone marrow of immunodeficient mice survive under severe hypoxia. We generated two hypoxia-adapted (HA)-Bcr-Abl(+) sublines by selection in long-term hypoxic cultures (1.0% O(2)). Interestingly, HA-Bcr-Abl(+) cells exhibited stem cell-like characteristics, including more cells in a dormant, increase of side population fraction, higher beta-catenin expression, resistance to Abl TKIs, and a higher transplantation efficiency. Compared with the respective parental cells, HA-Bcr-Abl(+) cells had higher levels of protein and higher enzyme activity of glyoxalase-I (Glo-I), an enzyme that detoxifies methylglyoxal, a cytotoxic by-product of glycolysis. In contrast to Abl TKIs, Glo-I inhibitors were much more effective in killing HA-Bcr-Abl(+) cells both in vitro and in vivo. These findings indicate that Glo-I is a novel molecular target for treatment of Bcr-Abl(+) leukemias, and, in particular, Abl TKI-resistant quiescent Bcr-Abl(+) leukemic cells that have acquired stem-like characteristics in the process of adapting to a hypoxic environment. |