|  Help  |  About  |  Contact Us

Publication : A novel molecular mechanism involved in multiple myeloma development revealed by targeting MafB to haematopoietic progenitors.

First Author  Vicente-Dueñas C Year  2012
Journal  EMBO J Volume  31
Issue  18 Pages  3704-17
PubMed ID  22903061 Mgi Jnum  J:189924
Mgi Id  MGI:5447252 Doi  10.1038/emboj.2012.227
Citation  Vicente-Duenas C, et al. (2012) A novel molecular mechanism involved in multiple myeloma development revealed by targeting MafB to haematopoietic progenitors. EMBO J 31(18):3704-17
abstractText  Understanding the cellular origin of cancer can help to improve disease prevention and therapeutics. Human plasma cell neoplasias are thought to develop from either differentiated B cells or plasma cells. However, when the expression of Maf oncogenes (associated to human plasma cell neoplasias) is targeted to mouse B cells, the resulting animals fail to reproduce the human disease. Here, to explore early cellular changes that might take place in the development of plasma cell neoplasias, we engineered transgenic mice to express MafB in haematopoietic stem/progenitor cells (HS/PCs). Unexpectedly, we show that plasma cell neoplasias arise in the MafB-transgenic mice. Beyond their clinical resemblance to human disease, these neoplasias highly express genes that are known to be upregulated in human multiple myeloma. Moreover, gene expression profiling revealed that MafB-expressing HS/PCs were more similar to B cells and tumour plasma cells than to any other subset, including wild-type HS/PCs. Consistent with this, genome-scale DNA methylation profiling revealed that MafB imposes an epigenetic program in HS/PCs, and that this program is preserved in mature B cells of MafB-transgenic mice, demonstrating a novel molecular mechanism involved in tumour initiation. Our findings suggest that, mechanistically, the haematopoietic progenitor population can be the target for transformation in MafB-associated plasma cell neoplasias.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

0 Expression