|  Help  |  About  |  Contact Us

Publication : Role of phosphatidylinositol 3,4,5-trisphosphate (PIP3) 5-phosphatase skeletal muscle- and kidney-enriched inositol polyphosphate phosphatase (SKIP) in myoblast differentiation.

First Author  Ijuin T Year  2012
Journal  J Biol Chem Volume  287
Issue  37 Pages  31330-41
PubMed ID  22815484 Mgi Jnum  J:192972
Mgi Id  MGI:5467174 Doi  10.1074/jbc.M112.388785
Citation  Ijuin T, et al. (2012) Role of phosphatidylinositol 3,4,5-trisphosphate (PIP3) 5-phosphatase skeletal muscle- and kidney-enriched inositol polyphosphate phosphatase (SKIP) in myoblast differentiation. J Biol Chem 287(37):31330-41
abstractText  Insulin-like growth factors (IGFs) are essential for the development, regeneration, and hypertrophy of skeletal muscles. IGF-II promotes myoblast differentiation through phosphatidylinositol 3-kinase (PI 3-kinase), Akt, and mTOR signaling. Here, we report that skeletal muscle- and kidney-enriched inositol polyphosphate phosphatase (SKIP) negatively regulates myogenesis through inhibition of IGF-II production and attenuation of the IGF-II-Akt-mTOR signaling pathway. We also demonstrate that SKIP expression, which was markedly elevated during differentiation, was controlled by MyoD in C2C12 cells. Expression of SKIP inhibited IGF-II at the transcription level. These results indicate that SKIP regulates MyoD-mediated muscle differentiation. Silencing of SKIP increased IGF-II transcription and myoblast differentiation. Furthermore, knockdown of SKIP resulted in thick myotubes with a larger number of nuclei than that in control C2C12 cells. Taken together, these data indicate that SKIP controls the IGF-II-PI 3-kinase-Akt-mTOR auto-regulation loop during myogenesis. Our findings identify SKIP as a key regulator of muscle cell differentiation.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

2 Authors

1 Bio Entities

0 Expression