|  Help  |  About  |  Contact Us

Publication : Transcription-coupled eviction of histones H2A/H2B governs V(D)J recombination.

First Author  Bevington S Year  2013
Journal  EMBO J Volume  32
Issue  10 Pages  1381-92
PubMed ID  23463099 Mgi Jnum  J:197998
Mgi Id  MGI:5495074 Doi  10.1038/emboj.2013.42
Citation  Bevington S, et al. (2013) Transcription-coupled eviction of histones H2A/H2B governs V(D)J recombination. EMBO J 32(10):1381-92
abstractText  Initiation of V(D)J recombination critically relies on the formation of an accessible chromatin structure at recombination signal sequences (RSSs) but how this accessibility is generated is poorly understood. Immunoglobulin light-chain loci normally undergo recombination in pre-B cells. We show here that equipping (earlier) pro-B cells with the increased pre-B-cell levels of just one transcription factor, IRF4, triggers the entire cascade of events leading to premature light-chain recombination. We then used this finding to dissect the critical events that generate RSS accessibility and show that the chromatin modifications previously associated with recombination are insufficient. Instead, we establish that non-coding transcription triggers IgL RSS accessibility and find that the accessibility is transient. Transcription transiently evicts H2A/H2B dimers, releasing 35-40 bp of nucleosomal DNA, and we demonstrate that H2A/H2B loss can explain the RSS accessibility observed in vivo. We therefore propose that the transcription-mediated eviction of H2A/H2B dimers is an important mechanism that makes RSSs accessible for the initiation of recombination.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

2 Authors

1 Bio Entities

0 Expression