|  Help  |  About  |  Contact Us

Publication : Specification of skeletal muscle differentiation by repressor element-1 silencing transcription factor (REST)-regulated Kv7.4 potassium channels.

First Author  Iannotti FA Year  2013
Journal  Mol Biol Cell Volume  24
Issue  3 Pages  274-84
PubMed ID  23242999 Mgi Jnum  J:200228
Mgi Id  MGI:5507908 Doi  10.1091/mbc.E11-12-1044
Citation  Iannotti FA, et al. (2013) Specification of skeletal muscle differentiation by repressor element-1 silencing transcription factor (REST)-regulated Kv7.4 potassium channels. Mol Biol Cell 24(3):274-84
abstractText  Changes in the expression of potassium (K(+)) channels is a pivotal event during skeletal muscle differentiation. In mouse C(2)C(12) cells, similarly to human skeletal muscle cells, myotube formation increased the expression of K(v)7.1, K(v)7.3, and K(v)7.4, the last showing the highest degree of regulation. In C(2)C(12) cells, K(v)7.4 silencing by RNA interference reduced the expression levels of differentiation markers (myogenin, myosin heavy chain, troponinT-1, and Pax3) and impaired myotube formation and multinucleation. In K(v)7.4-silenced cells, the differentiation-promoting effect of the K(v)7 activator N-(2-amino-4-(4-fluorobenzylamino)-phenyl)-carbamic acid ethyl ester (retigabine) was abrogated. Expression levels for the repressor element-1 silencing transcription factor (REST) declined during myotube formation. Transcript levels for K(v)7.4, as well as for myogenin, troponinT-1, and Pax3, were reduced by REST overexpression and enhanced upon REST suppression by RNA interference. Four regions containing potential REST-binding sites in the 5' untranslated region and in the first intron of the K(v)7.4 gene were identified by bioinformatic analysis. Chromatin immunoprecipitation assays showed that REST binds to these regions, exhibiting a higher efficiency in myoblasts than in myotubes. These data suggest that K(v)7.4 plays a permissive role in skeletal muscle differentiation and highlight REST as a crucial transcriptional regulator for this K(+) channel subunit.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

2 Bio Entities

0 Expression