|  Help  |  About  |  Contact Us

Publication : ATP-binding cassette transporter ABCA4 and chemical isomerization protect photoreceptor cells from the toxic accumulation of excess 11-cis-retinal.

First Author  Quazi F Year  2014
Journal  Proc Natl Acad Sci U S A Volume  111
Issue  13 Pages  5024-9
PubMed ID  24707049 Mgi Jnum  J:208864
Mgi Id  MGI:5565126 Doi  10.1073/pnas.1400780111
Citation  Quazi F, et al. (2014) ATP-binding cassette transporter ABCA4 and chemical isomerization protect photoreceptor cells from the toxic accumulation of excess 11-cis-retinal. Proc Natl Acad Sci U S A 111(13):5024-9
abstractText  The visual cycle is a series of enzyme-catalyzed reactions which converts all-trans-retinal to 11-cis-retinal for the regeneration of visual pigments in rod and cone photoreceptor cells. Although essential for vision, 11-cis-retinal like all-trans-retinal is highly toxic due to its highly reactive aldehyde group and has to be detoxified by either reduction to retinol or sequestration within retinal-binding proteins. Previous studies have focused on the role of the ATP-binding cassette transporter ABCA4 associated with Stargardt macular degeneration and retinol dehydrogenases (RDH) in the clearance of all-trans-retinal from photoreceptors following photoexcitation. How rod and cone cells prevent the accumulation of 11-cis-retinal in photoreceptor disk membranes in excess of what is required for visual pigment regeneration is not known. Here we show that ABCA4 can transport N-11-cis-retinylidene-phosphatidylethanolamine (PE), the Schiff-base conjugate of 11-cis-retinal and PE, from the lumen to the cytoplasmic leaflet of disk membranes. This transport function together with chemical isomerization to its all-trans isomer and reduction to all-trans-retinol by RDH can prevent the accumulation of excess 11-cis-retinal and its Schiff-base conjugate and the formation of toxic bisretinoid compounds as found in ABCA4-deficient mice and individuals with Stargardt macular degeneration. This segment of the visual cycle in which excess 11-cis-retinal is converted to all-trans-retinol provides a rationale for the unusually high content of PE and its long-chain unsaturated docosahexaenoyl group in photoreceptor membranes and adds insight into the molecular mechanisms responsible for Stargardt macular degeneration.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

2 Authors

1 Bio Entities

0 Expression