|  Help  |  About  |  Contact Us

Publication : Myosin phosphatase modulates the cardiac cell fate by regulating the subcellular localization of Nkx2.5 in a Wnt/Rho-associated protein kinase-dependent pathway.

First Author  Ryan T Year  2013
Journal  Circ Res Volume  112
Issue  2 Pages  257-66
PubMed ID  23168335 Mgi Jnum  J:212869
Mgi Id  MGI:5582370 Doi  10.1161/CIRCRESAHA.112.275818
Citation  Ryan T, et al. (2013) Myosin phosphatase modulates the cardiac cell fate by regulating the subcellular localization of Nkx2.5 in a Wnt/Rho-associated protein kinase-dependent pathway. Circ Res 112(2):257-66
abstractText  RATIONALE: Nkx2.5 is a transcription factor that regulates cardiomyogenesis in vivo and in embryonic stem cells. It is also a common target in congenital heart disease. Although Nkx2.5 has been implicated in the regulation of many cellular processes that ultimately contribute to cardiomyogenesis and morphogenesis of the mature heart, relatively little is known about how it is regulated at a functional level. OBJECTIVE: We have undertaken a proteomic screen to identify novel binding partners of Nkx2.5 during cardiomyogenic differentiation in an effort to better understand the regulation of its transcriptional activity. METHODS AND RESULTS: Purification of Nkx2.5 from differentiating cells identified the myosin phosphatase subunits protein phosphatase 1beta and myosin phosphatase targeting subunit 1 (Mypt1) as novel binding partners. The interaction with protein phosphatase 1 beta/Mypt1 resulted in exclusion of Nkx2.5 from the nucleus and, consequently, inhibition of its transcriptional activity. Exclusion of Nkx2.5 was inhibited by treatment with leptomycin B and was dependent on an Mypt1 nuclear export signal. Furthermore, in transient transfection experiments, Nkx2.5 colocalized outside the nucleus with phosphorylated Mypt1 in a manner dependent on Wnt signaling and Rho-associated protein kinase. Treatment of differentiating mouse embryonic stem cells with Wnt3a resulted in enhanced phosphorylation of endogenous Mypt1, increased nuclear exclusion of endogenous Nkx2.5, and a failure to undergo terminal cardiomyogenesis. Finally, knockdown of Mypt1 resulted in rescue of Wnt3a-mediated inhibition of cardiomyogenesis, indicating that Mypt1 is required for this process. CONCLUSIONS: We have identified a novel interaction between Nkx2.5 and myosin phosphatase. Promoting this interaction represents a novel mechanism whereby Wnt3a regulates Nkx2.5 and inhibits cardiomyogenesis.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

2 Bio Entities

0 Expression