First Author | Ryu HH | Year | 2014 |
Journal | Neurobiol Aging | Volume | 35 |
Issue | 12 | Pages | 2822-2831 |
PubMed ID | 25216585 | Mgi Jnum | J:218433 |
Mgi Id | MGI:5617457 | Doi | 10.1016/j.neurobiolaging.2014.07.026 |
Citation | Ryu HH, et al. (2014) Autophagy regulates amyotrophic lateral sclerosis-linked fused in sarcoma-positive stress granules in neurons. Neurobiol Aging 35(12):2822-2831 |
abstractText | Mutations in fused in sarcoma (FUS), a DNA/RNA binding protein, have been associated with familial amyotrophic lateral sclerosis (fALS), which is a fatal neurodegenerative disease that causes progressive muscular weakness and has overlapping clinical and pathologic characteristics with frontotemporal lobar degeneration. However, the role of autophagy in regulation of FUS-positive stress granules (SGs) and aggregates remains unclear. We found that the ALS-linked FUS(R521C) mutation causes accumulation of FUS-positive SGs under oxidative stress, leading to a disruption in the release of FUS from SGs in cultured neurons. Autophagy controls the quality of proteins or organelles; therefore, we checked whether autophagy regulates FUS(R521C)-positive SGs. Interestingly, FUS(R521C)-positive SGs were colocalized to RFP-LC3-positive autophagosomes. Furthermore, FUS-positive SGs accumulated in atg5(-/-) mouse embryonic fibroblasts (MEFs) and in autophagy-deficient neurons. However, FUS(R521C) expression did not significantly impair autophagic degradation. Moreover, autophagy activation with rapamycin reduced the accumulation of FUS-positive SGs in an autophagy-dependent manner. Rapamycin further reduced neurite fragmentation and cell death in neurons expressing mutant FUS under oxidative stress. Overall, we provide a novel pathogenic mechanism of ALS associated with a FUS mutation under oxidative stress, as well as therapeutic insight regarding FUS pathology associated with excessive SGs. |