|  Help  |  About  |  Contact Us

Publication : siRNA-based spherical nucleic acids reverse impaired wound healing in diabetic mice by ganglioside GM3 synthase knockdown.

First Author  Randeria PS Year  2015
Journal  Proc Natl Acad Sci U S A Volume  112
Issue  18 Pages  5573-8
PubMed ID  25902507 Mgi Jnum  J:221328
Mgi Id  MGI:5638939 Doi  10.1073/pnas.1505951112
Citation  Randeria PS, et al. (2015) siRNA-based spherical nucleic acids reverse impaired wound healing in diabetic mice by ganglioside GM3 synthase knockdown. Proc Natl Acad Sci U S A 112(18):5573-8
abstractText  Spherical nucleic acid (SNA) gold nanoparticle conjugates (13-nm-diameter gold cores functionalized with densely packed and highly oriented nucleic acids) dispersed in Aquaphor have been shown to penetrate the epidermal barrier of both intact mouse and human skin, enter keratinocytes, and efficiently down-regulate gene targets. ganglioside-monosialic acid 3 synthase (GM3S) is a known target that is overexpressed in diabetic mice and responsible for causing insulin resistance and impeding wound healing. GM3S SNAs increase keratinocyte migration and proliferation as well as insulin and insulin-like growth factor-1 (IGF1) receptor activation under both normo- and hyperglycemic conditions. The topical application of GM3S SNAs (50 nM) to splinted 6-mm-diameter full-thickness wounds in diet-induced obese diabetic mice decreases local GM3S expression by >80% at the wound edge through an siRNA pathway and fully heals wounds clinically and histologically within 12 d, whereas control-treated wounds are only 50% closed. Granulation tissue area, vascularity, and IGF1 and EGF receptor phosphorylation are increased in GM3S SNA-treated wounds. These data capitalize on the unique ability of SNAs to naturally penetrate the skin and enter keratinocytes without the need for transfection agents. Moreover, the data further validate GM3 as a mediator of the delayed wound healing in type 2 diabetes and support regional GM3 depletion as a promising therapeutic direction.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

1 Bio Entities

0 Expression