|  Help  |  About  |  Contact Us

Publication : Akt2 knockout alleviates prolonged caloric restriction-induced change in cardiac contractile function through regulation of autophagy.

First Author  Zhang Y Year  2014
Journal  J Mol Cell Cardiol Volume  71
Pages  81-91 PubMed ID  24368095
Mgi Jnum  J:224960 Mgi Id  MGI:5689794
Doi  10.1016/j.yjmcc.2013.12.010 Citation  Zhang Y, et al. (2014) Akt2 knockout alleviates prolonged caloric restriction-induced change in cardiac contractile function through regulation of autophagy. J Mol Cell Cardiol 71:81-91
abstractText  Caloric restriction leads to changes in heart geometry and function although the underlying mechanism remains elusive. Autophagy, a conserved pathway for degradation of intracellular proteins and organelles, preserves energy and nutrient in the face of caloric insufficiency. This study was designed to examine the role of Akt2 in prolonged caloric restriction-induced change in cardiac homeostasis and the underlying mechanism(s) involved. Wild-type (WT) and Akt2 knockout mice were calorie restricted (by 40%) for 30weeks. Echocardiographic, cardiomyocyte contractile and intracellular Ca(2+) properties, autophagy and its regulatory proteins were evaluated. Caloric restriction compromised echocardiographic indices (decreased left ventricular mass, left ventricular diameters and cardiac output), cardiomyocyte contractile and intracellular Ca(2+) properties associated with dampened SERCA2a phosphorylation, upregulated phospholamban and autophagy (Beclin-1, Atg7, LC3BII-to-LC3BI ratio), increased autophagy adaptor protein p62, elevated phosphorylation of AMPK, Akt2 and the Akt downstream signal molecule TSC2, the effects of which with the exception of autophagy protein markers (Beclin-1, Atg7, LC3B) and AMPK were mitigated or significantly alleviated by Akt2 knockout. Lysosomal inhibition using bafilomycin A1 negated Akt2 knockout-induced protective effect on p62. Evaluation of downstream signaling molecules of Akt and AMPK including mTOR and ULK1 revealed that caloric restriction suppressed and promoted phosphorylation of mTOR and ULK1, respectively, without affecting total mTOR and ULK1 expression. Akt2 knockout significantly augmented caloric restriction-induced responses on mTOR and ULK1. Taken together, these data suggest a beneficial role of Akt2 knockout in preservation of cardiac homeostasis against prolonged caloric restriction-induced pathological changes possibly through facilitating autophagy. This article is part of a Special Issue entitled "Protein Quality Control, the Ubiquitin Proteasome System, and Autophagy."
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Authors

0 Bio Entities

0 Expression