|  Help  |  About  |  Contact Us

Publication : CXCR4<sup>+</sup> CD45<sup>-</sup> Cells are Niche Forming for Osteoclastogenesis via the SDF-1, CXCL7, and CX3CL1 Signaling Pathways in Bone Marrow.

First Author  Goto Y Year  2016
Journal  Stem Cells Volume  34
Issue  11 Pages  2733-2743
PubMed ID  27339271 Mgi Jnum  J:238362
Mgi Id  MGI:5819161 Doi  10.1002/stem.2440
Citation  Goto Y, et al. (2016) CXCR4(+) CD45(-) Cells are Niche Forming for Osteoclastogenesis via the SDF-1, CXCL7, and CX3CL1 Signaling Pathways in Bone Marrow. Stem Cells 34(11):2733-2743
abstractText  Bone homeostasis comprises the balance between bone-forming osteoblasts and bone-resorbing osteoclasts (OCs), with an acceleration of osteoclastic bone resorption leading to osteoporosis. OCs can be generated from bone marrow cells (BMCs) under the tightly regulated local bone environment. However, it remained difficult to identify the critical cells responsible for providing an osteoclastogenesis niche. In this study, we used a fluorescence-activated cell sorting technique to determine the cell populations important for forming an appropriate microenvironment for osteoclastogenesis and to verify the associated interactions between osteoclast precursor cells and non-OCs. We isolated and removed a small cell population specific for osteoclastogenesis (CXCR4(+) CD45(-) ) from mouse BMCs and cultured the remaining cells with receptor activator of nuclear factor-kappa B ligand (RANKL) and macrophage-colony stimulating factor. The resulting cultures showed significantly less large osteoclast formation. Quantitative RT-PCR analysis revealed that these CXCR4(+) CD45(-) cells expressed low levels of RANK and RANKL, but high levels of critical chemokines including stromal cell derived factor 1 (SDF-1), chemokine (C-X-C motif) ligand 7 (CXCL7), and chemokine (C-X3-C motif) ligand 1 (CX3CL1). Furthermore, an SDF-1-specific antibody strongly suppressed OC formation in RAW264.7 cells and antibodies against SDF-1, CXCL7, and CX3CL1 suppressed OC formation in BMCs. These results suggest that isolated CXCR4(+) CD45(-) cells support an appropriate microenvironment for osteoclastogenesis with a direct effect on the cells expressing SDF-1, CXCL7, and CX3CL1 receptors. The regulation of CXCR4(+) CD45(-) cell function might therefore inform therapeutic strategies for diseases involving loss of bone homeostasis. Stem Cells 2016;34:2733-2743.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

0 Expression