First Author | Gupta V | Year | 2017 |
Journal | J Mol Cell Cardiol | Volume | 102 |
Pages | 61-73 | PubMed ID | 27865915 |
Mgi Jnum | J:251572 | Mgi Id | MGI:6101983 |
Doi | 10.1016/j.yjmcc.2016.11.005 | Citation | Gupta V, et al. (2017) Functional promoter polymorphisms direct the expression of cystathionine gamma-lyase gene in mouse models of essential hypertension. J Mol Cell Cardiol 102:61-73 |
abstractText | Despite the well-known role of cystathionine gamma-lyase (Cth) in cardiovascular pathophysiology, transcriptional regulation of Cth remains incompletely understood. Sequencing of the Cth promoter region in mouse models of genetic/essential hypertension (viz. Blood Pressure High [BPH], Blood Pressure Low [BPL] and Blood Pressure Normal [BPN] mice) identified several genetic variations. Transient transfections of BPH/BPL-Cth promoter-reporter plasmids into various cell types revealed higher promoter activity of BPL-Cth than that of BPH-Cth. Corroboratively, endogenous Cth mRNA levels in kidney and liver tissues were also elevated in BPL mice. Computational analysis of the polymorphic Cth promoter region predicted differential binding affinity of c-Rel, HOXA3 and IRF1 with BPL/BPH-Cth promoter domains. Over-expression of c-Rel/HOXA3/IRF1 modulated BPL/BPH-Cth promoter activities in a consistent manner. Gel shift assays using BPH/BPL-Cth-promoter oligonucleotides with/without binding sites for c-Rel/HOXA3/IRF1 displayed formation of specific complexes with c-Rel/HOXA3/IRF1; addition of antibodies to reaction mixtures resulted in supershifts/inhibition of Cth promoter-transcription factor complexes. Furthermore, chromatin immunoprecipitation (ChIP) assays proved differential binding of c-Rel, HOXA3 and IRF1 with the polymorphic promoter region of BPL/BPH-Cth. Tumor necrosis factor-alpha (TNF-alpha) reduced the activities of BPL/BPH-Cth promoters to different extents that were further declined by ectopic expression of IRF1; on the other hand, siRNA-mediated down-regulation of IRF1 rescued the TNF-alpha-mediated suppression of the BPL/BPH-Cth promoter activities. In corroboration, ChIP analysis revealed enhanced binding of IRF1 with BPH/BPL-Cth promoter following TNF-alpha treatment. BPL/BPH-Cth promoter activity was diminished upon exposure of hepatocytes and cardiomyoblasts to ischemia-like pathological condition due to reduced binding of c-Rel with BPL/BPH-Cth-promoter. Taken together, this study reveals the molecular basis for the differential expression of Cth in mouse models of essential hypertension under basal and pathophysiological conditions. |