|  Help  |  About  |  Contact Us

Publication : Studies on the regulatory mechanism of isocitrate dehydrogenase 2 using acetylation mimics.

First Author  Xu Y Year  2017
Journal  Sci Rep Volume  7
Issue  1 Pages  9785
PubMed ID  28852116 Mgi Jnum  J:255741
Mgi Id  MGI:6108546 Doi  10.1038/s41598-017-10337-7
Citation  Xu Y, et al. (2017) Studies on the regulatory mechanism of isocitrate dehydrogenase 2 using acetylation mimics. Sci Rep 7(1):9785
abstractText  Mitochondrial isocitrate dehydrogenase 2 (IDH2) converts NADP(+) to NADPH and promotes regeneration of reduced glutathione (GSH) by supplying NADPH to glutathione reductase or thioredoxin reductase. We have previously shown that under calorie restriction, mitochondrial deacetylase Sirt3 deacetylates and activates IDH2, thereby regulating the mitochondrial glutathione antioxidant defense system in mice. To investigate the regulatory mechanism of mIDH2 (mouse mitochondrial IDH2), we used lysine-to-glutamine (KQ) mutants to mimic acetylated lysines and screened 15 KQ mutants. Among these mutants, the activities of the K256Q and K413Q proteins were less than 50% of the wild-type value. We then solved the crystal structures of the wild-type mIDH2 and the K256Q mutant proteins, revealing conformational changes in the substrate-binding pocket. Structural data suggested that positively charged Lys256 was important in stabilizing the pocket because it repelled a lysine cluster on the other side. Glutamine (or acetylated lysine) was neutral and thus caused the pocket size to decrease, which might be the main reason for the lower activity of the K256Q mutant. Together, our data provide the first structure of an acetylation mimic of mIDH2 and new insights into the regulatory mechanism of acetylation of mIDH2.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

0 Bio Entities

0 Expression