First Author | Mazzeo C | Year | 2016 |
Journal | Cell Death Differ | Volume | 23 |
Issue | 1 | Pages | 99-109 |
PubMed ID | 26045048 | Mgi Jnum | J:258901 |
Mgi Id | MGI:6140798 | Doi | 10.1038/cdd.2015.72 |
Citation | Mazzeo C, et al. (2016) Protein kinase D1/2 is involved in the maturation of multivesicular bodies and secretion of exosomes in T and B lymphocytes. Cell Death Differ 23(1):99-109 |
abstractText | Multivesicular bodies (MVBs) are endocytic compartments that enclose intraluminal vesicles (ILVs) formed by inward budding from the limiting membrane of endosomes. In T lymphocytes, these ILV contain Fas ligand (FasL) and are secreted as ''lethal exosomes'' following activation-induced fusion of the MVB with the plasma membrane. Diacylglycerol (DAG) and diacylglycerol kinase alpha (DGKalpha) regulate MVB maturation and polarized traffic, as well as subsequent secretion of pro-apoptotic exosomes, but the molecular basis underlying these phenomena remains unclear. Here we identify protein kinase D (PKD) family members as DAG effectors involved in MVB genesis and secretion. We show that the inducible secretion of exosomes is enhanced when a constitutively active PKD1 mutant is expressed in T lymphocytes, whereas exosome secretion is impaired in PKD2-deficient mouse T lymphoblasts and in PKD1/3-null B cells. Analysis of PKD2-deficient T lymphoblasts showed the presence of large, immature MVB-like vesicles and demonstrated defects in cytotoxic activity and in activation-induced cell death. Using pharmacological and genetic tools, we show that DGKalpha regulates PKD1/2 subcellular localization and activation. Our studies demonstrate that PKD1/2 is a key regulator of MVB maturation and exosome secretion, and constitutes a mediator of the DGKalpha effect on MVB secretory traffic. |